Create model cards for indonesian models (#6522)

* added model cards for indonesian gpt2-small, bert-base and roberta-base models

* removed bibtex entries
This commit is contained in:
Cahya Wirawan 2020-08-17 09:42:25 +02:00 коммит произвёл GitHub
Родитель 48c6c6139f
Коммит 72911c893a
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
3 изменённых файлов: 195 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,73 @@
---
language: "id"
license: "mit"
datasets:
- Indonesian Wikipedia
widget:
- text: "Ibu ku sedang bekerja [MASK] supermarket."
---
# Indonesian BERT base model (uncased)
## Model description
It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This
model is uncased: it does not make a difference between indonesia and Indonesia.
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M')
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket")
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]',
'score': 0.7983310222625732,
'token': 1495},
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]',
'score': 0.090003103017807,
'token': 17},
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]',
'score': 0.025469014421105385,
'token': 1600},
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]',
'score': 0.017966199666261673,
'token': 1555},
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]',
'score': 0.016971781849861145,
'token': 1572}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
model_name='cahya/bert-base-indonesian-522M'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in Tensorflow:
```python
from transformers import BertTokenizer, TFBertModel
model_name='cahya/bert-base-indonesian-522M'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = TFBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
This model was pre-trained with 522MB of indonesian Wikipedia.
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
then of the form:
```[CLS] Sentence A [SEP] Sentence B [SEP]```

Просмотреть файл

@ -0,0 +1,64 @@
---
language: "id"
license: "mit"
datasets:
- Indonesian Wikipedia
widget:
- text: "Pulau Dewata sering dikunjungi"
---
# Indonesian GPT2 small model
## Model description
It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This
model is uncased: it does not make a difference between indonesia and Indonesia.
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M')
>>> set_seed(42)
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10)
[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'},
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'},
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'},
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'},
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
model_name='cahya/gpt2-small-indonesian-522M'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2Model.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in Tensorflow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
model_name='cahya/gpt2-small-indonesian-522M'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = TFGPT2Model.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
This model was pre-trained with 522MB of indonesian Wikipedia.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and
a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.

Просмотреть файл

@ -0,0 +1,58 @@
---
language: "id"
license: "mit"
datasets:
- Indonesian Wikipedia
widget:
- text: "Ibu ku sedang bekerja <mask> supermarket."
---
# Indonesian RoBERTa base model (uncased)
## Model description
It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This
model is uncased: it does not make a difference between indonesia and Indonesia.
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M')
>>> unmasker("Ibu ku sedang bekerja <mask> supermarket")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
model_name='cahya/roberta-base-indonesian-522M'
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in Tensorflow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
model_name='cahya/roberta-base-indonesian-522M'
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = TFRobertaModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
This model was pre-trained with 522MB of indonesian Wikipedia.
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
then of the form:
```<s> Sentence A </s> Sentence B </s>```