Create model cards for indonesian models (#6522)
* added model cards for indonesian gpt2-small, bert-base and roberta-base models * removed bibtex entries
This commit is contained in:
Родитель
48c6c6139f
Коммит
72911c893a
|
@ -0,0 +1,73 @@
|
|||
---
|
||||
language: "id"
|
||||
license: "mit"
|
||||
datasets:
|
||||
- Indonesian Wikipedia
|
||||
widget:
|
||||
- text: "Ibu ku sedang bekerja [MASK] supermarket."
|
||||
---
|
||||
|
||||
# Indonesian BERT base model (uncased)
|
||||
|
||||
## Model description
|
||||
It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This
|
||||
model is uncased: it does not make a difference between indonesia and Indonesia.
|
||||
|
||||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
||||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
### How to use
|
||||
You can use this model directly with a pipeline for masked language modeling:
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M')
|
||||
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket")
|
||||
|
||||
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]',
|
||||
'score': 0.7983310222625732,
|
||||
'token': 1495},
|
||||
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]',
|
||||
'score': 0.090003103017807,
|
||||
'token': 17},
|
||||
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]',
|
||||
'score': 0.025469014421105385,
|
||||
'token': 1600},
|
||||
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]',
|
||||
'score': 0.017966199666261673,
|
||||
'token': 1555},
|
||||
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]',
|
||||
'score': 0.016971781849861145,
|
||||
'token': 1572}]
|
||||
```
|
||||
Here is how to use this model to get the features of a given text in PyTorch:
|
||||
```python
|
||||
from transformers import BertTokenizer, BertModel
|
||||
|
||||
model_name='cahya/bert-base-indonesian-522M'
|
||||
tokenizer = BertTokenizer.from_pretrained(model_name)
|
||||
model = BertModel.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='pt')
|
||||
output = model(**encoded_input)
|
||||
```
|
||||
and in Tensorflow:
|
||||
```python
|
||||
from transformers import BertTokenizer, TFBertModel
|
||||
|
||||
model_name='cahya/bert-base-indonesian-522M'
|
||||
tokenizer = BertTokenizer.from_pretrained(model_name)
|
||||
model = TFBertModel.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='tf')
|
||||
output = model(encoded_input)
|
||||
```
|
||||
|
||||
## Training data
|
||||
|
||||
This model was pre-trained with 522MB of indonesian Wikipedia.
|
||||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
|
||||
then of the form:
|
||||
|
||||
```[CLS] Sentence A [SEP] Sentence B [SEP]```
|
|
@ -0,0 +1,64 @@
|
|||
---
|
||||
language: "id"
|
||||
license: "mit"
|
||||
datasets:
|
||||
- Indonesian Wikipedia
|
||||
widget:
|
||||
- text: "Pulau Dewata sering dikunjungi"
|
||||
---
|
||||
|
||||
# Indonesian GPT2 small model
|
||||
|
||||
## Model description
|
||||
It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This
|
||||
model is uncased: it does not make a difference between indonesia and Indonesia.
|
||||
|
||||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
||||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
### How to use
|
||||
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
|
||||
we set a seed for reproducibility:
|
||||
```python
|
||||
>>> from transformers import pipeline, set_seed
|
||||
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M')
|
||||
>>> set_seed(42)
|
||||
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10)
|
||||
|
||||
[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'},
|
||||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'},
|
||||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'},
|
||||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'},
|
||||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}]
|
||||
|
||||
```
|
||||
Here is how to use this model to get the features of a given text in PyTorch:
|
||||
```python
|
||||
from transformers import GPT2Tokenizer, GPT2Model
|
||||
|
||||
model_name='cahya/gpt2-small-indonesian-522M'
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
||||
model = GPT2Model.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='pt')
|
||||
output = model(**encoded_input)
|
||||
```
|
||||
and in Tensorflow:
|
||||
```python
|
||||
from transformers import GPT2Tokenizer, TFGPT2Model
|
||||
|
||||
model_name='cahya/gpt2-small-indonesian-522M'
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
||||
model = TFGPT2Model.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='tf')
|
||||
output = model(encoded_input)
|
||||
```
|
||||
|
||||
## Training data
|
||||
|
||||
This model was pre-trained with 522MB of indonesian Wikipedia.
|
||||
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and
|
||||
a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.
|
|
@ -0,0 +1,58 @@
|
|||
---
|
||||
language: "id"
|
||||
license: "mit"
|
||||
datasets:
|
||||
- Indonesian Wikipedia
|
||||
widget:
|
||||
- text: "Ibu ku sedang bekerja <mask> supermarket."
|
||||
---
|
||||
|
||||
# Indonesian RoBERTa base model (uncased)
|
||||
|
||||
## Model description
|
||||
It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This
|
||||
model is uncased: it does not make a difference between indonesia and Indonesia.
|
||||
|
||||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
||||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
### How to use
|
||||
You can use this model directly with a pipeline for masked language modeling:
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M')
|
||||
>>> unmasker("Ibu ku sedang bekerja <mask> supermarket")
|
||||
|
||||
```
|
||||
Here is how to use this model to get the features of a given text in PyTorch:
|
||||
```python
|
||||
from transformers import RobertaTokenizer, RobertaModel
|
||||
|
||||
model_name='cahya/roberta-base-indonesian-522M'
|
||||
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
||||
model = RobertaModel.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='pt')
|
||||
output = model(**encoded_input)
|
||||
```
|
||||
and in Tensorflow:
|
||||
```python
|
||||
from transformers import RobertaTokenizer, TFRobertaModel
|
||||
|
||||
model_name='cahya/roberta-base-indonesian-522M'
|
||||
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
||||
model = TFRobertaModel.from_pretrained(model_name)
|
||||
text = "Silakan diganti dengan text apa saja."
|
||||
encoded_input = tokenizer(text, return_tensors='tf')
|
||||
output = model(encoded_input)
|
||||
```
|
||||
|
||||
## Training data
|
||||
|
||||
This model was pre-trained with 522MB of indonesian Wikipedia.
|
||||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
|
||||
then of the form:
|
||||
|
||||
```<s> Sentence A </s> Sentence B </s>```
|
Загрузка…
Ссылка в новой задаче