[model_cards] roberta-base-finetuned-yelp-polarity (#6009)

* [model_cards] roberta-base-finetuned-yelp-polarity

* Update model_cards/VictorSanh/roberta-base-finetuned-yelp-polarity/README.md

Co-authored-by: Julien Chaumond <chaumond@gmail.com>

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
Victor SANH 2020-07-24 09:45:21 -04:00 коммит произвёл GitHub
Родитель 614fef1691
Коммит 778e635fc9
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 25 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,25 @@
---
language: en
datasets:
- yelp_polarity
---
# RoBERTa-base-finetuned-yelp-polarity
This is a [RoBERTa-base](https://huggingface.co/roberta-base) checkpoint fine-tuned on binary sentiment classifcation from [Yelp polarity](https://huggingface.co/nlp/viewer/?dataset=yelp_polarity).
It gets **98.08%** accuracy on the test set.
## Hyper-parameters
We used the following hyper-parameters to train the model on one GPU:
```python
num_train_epochs = 2.0
learning_rate = 1e-05
weight_decay = 0.0
adam_epsilon = 1e-08
max_grad_norm = 1.0
per_device_train_batch_size = 32
gradient_accumulation_steps = 1
warmup_steps = 3500
seed = 42
```