[model_cards] roberta-base-finetuned-yelp-polarity (#6009)
* [model_cards] roberta-base-finetuned-yelp-polarity * Update model_cards/VictorSanh/roberta-base-finetuned-yelp-polarity/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com> Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
Родитель
614fef1691
Коммит
778e635fc9
|
@ -0,0 +1,25 @@
|
|||
---
|
||||
language: en
|
||||
datasets:
|
||||
- yelp_polarity
|
||||
---
|
||||
|
||||
# RoBERTa-base-finetuned-yelp-polarity
|
||||
|
||||
This is a [RoBERTa-base](https://huggingface.co/roberta-base) checkpoint fine-tuned on binary sentiment classifcation from [Yelp polarity](https://huggingface.co/nlp/viewer/?dataset=yelp_polarity).
|
||||
It gets **98.08%** accuracy on the test set.
|
||||
|
||||
## Hyper-parameters
|
||||
|
||||
We used the following hyper-parameters to train the model on one GPU:
|
||||
```python
|
||||
num_train_epochs = 2.0
|
||||
learning_rate = 1e-05
|
||||
weight_decay = 0.0
|
||||
adam_epsilon = 1e-08
|
||||
max_grad_norm = 1.0
|
||||
per_device_train_batch_size = 32
|
||||
gradient_accumulation_steps = 1
|
||||
warmup_steps = 3500
|
||||
seed = 42
|
||||
```
|
Загрузка…
Ссылка в новой задаче