Early tests
This commit is contained in:
Родитель
25a31953e8
Коммит
870320a24e
|
@ -11,6 +11,15 @@ from .file_utils import add_start_docstrings
|
|||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
|
||||
'albert-base': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-pytorch_model.bin",
|
||||
'albert-large': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-pytorch_model.bin",
|
||||
'albert-xlarge': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-pytorch_model.bin",
|
||||
'albert-xxlarge': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-pytorch_model.bin",
|
||||
}
|
||||
|
||||
|
||||
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
|
||||
""" Load tf checkpoints in a pytorch model."""
|
||||
try:
|
||||
|
@ -39,6 +48,7 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
|
|||
for name, array in zip(names, arrays):
|
||||
original_name = name
|
||||
name = name.replace("ffn_1", "ffn")
|
||||
name = name.replace("/bert/", "/albert/")
|
||||
name = name.replace("ffn/intermediate/output", "ffn_output")
|
||||
name = name.replace("attention_1", "attention")
|
||||
name = name.replace("cls/predictions", "predictions")
|
||||
|
@ -114,29 +124,6 @@ class AlbertAttention(BertSelfAttention):
|
|||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
|
||||
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads
|
||||
for head in heads:
|
||||
# Compute how many pruned heads are before the head and move the index accordingly
|
||||
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
|
||||
mask[head] = 0
|
||||
mask = mask.view(-1).contiguous().eq(1)
|
||||
index = torch.arange(len(mask))[mask].long()
|
||||
|
||||
# Prune linear layers
|
||||
self.query = prune_linear_layer(self.query, index)
|
||||
self.key = prune_linear_layer(self.key, index)
|
||||
self.value = prune_linear_layer(self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.num_attention_heads = self.num_attention_heads - len(heads)
|
||||
self.all_head_size = self.attention_head_size * self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, head_mask=None):
|
||||
mixed_query_layer = self.query(input_ids)
|
||||
mixed_key_layer = self.key(input_ids)
|
||||
|
@ -225,7 +212,7 @@ class AlbertLayerGroup(nn.Module):
|
|||
layer_attentions = layer_attentions + (layer_output[1],)
|
||||
|
||||
if self.output_hidden_states:
|
||||
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
||||
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
if self.output_hidden_states:
|
||||
|
@ -367,6 +354,8 @@ class AlbertModel(BertModel):
|
|||
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.pooler_activation = nn.Tanh()
|
||||
|
||||
self.init_weights()
|
||||
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
|
||||
if attention_mask is None:
|
||||
|
@ -422,33 +411,41 @@ class AlbertForMaskedLM(BertPreTrainedModel):
|
|||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
"""
|
||||
|
||||
|
||||
config_class = AlbertConfig
|
||||
pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
load_tf_weights = load_tf_weights_in_albert
|
||||
base_model_prefix = "albert"
|
||||
|
||||
def __init__(self, config):
|
||||
super(AlbertForMaskedLM, self).__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.bert = AlbertModel(config)
|
||||
self.albert = AlbertModel(config)
|
||||
self.LayerNorm = nn.LayerNorm(config.embedding_size)
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
||||
self.word_embeddings = nn.Linear(config.embedding_size, config.vocab_size)
|
||||
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
|
||||
self.activation = ACT2FN[config.hidden_act]
|
||||
|
||||
self.init_weights()
|
||||
self.tie_weights()
|
||||
|
||||
def tie_weights(self):
|
||||
""" Make sure we are sharing the input and output embeddings.
|
||||
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
||||
"""
|
||||
self._tie_or_clone_weights(self.classifier.word_embeddings,
|
||||
self.transformer.embeddings.word_embeddings)
|
||||
self._tie_or_clone_weights(self.decoder,
|
||||
self.albert.embeddings.word_embeddings)
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
||||
masked_lm_labels=None):
|
||||
outputs = self.bert(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None)
|
||||
outputs = self.albert(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None)
|
||||
sequence_outputs = outputs[0]
|
||||
hidden_states = self.dense(sequence_outputs)
|
||||
hidden_states = self.activation(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
prediction_scores = self.word_embeddings(hidden_states)
|
||||
prediction_scores = self.decoder(hidden_states)
|
||||
|
||||
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
|
||||
if masked_lm_labels is not None:
|
||||
|
|
|
@ -0,0 +1,191 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from transformers import is_torch_available
|
||||
|
||||
from .modeling_common_test import (CommonTestCases, ids_tensor)
|
||||
from .configuration_common_test import ConfigTester
|
||||
|
||||
if is_torch_available():
|
||||
from transformers import (AlbertConfig, AlbertModel, AlbertForMaskedLM)
|
||||
from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
else:
|
||||
pytestmark = pytest.mark.skip("Require Torch")
|
||||
|
||||
|
||||
class AlbertModelTest(CommonTestCases.CommonModelTester):
|
||||
|
||||
all_model_classes = (AlbertModel, AlbertForMaskedLM) if is_torch_available() else ()
|
||||
test_pruning = False
|
||||
test_head_masking = False
|
||||
|
||||
class AlbertModelTester(object):
|
||||
|
||||
def __init__(self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = AlbertConfig(
|
||||
vocab_size_or_config_json_file=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def check_loss_output(self, result):
|
||||
self.parent.assertListEqual(
|
||||
list(result["loss"].size()),
|
||||
[])
|
||||
|
||||
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = AlbertModel(config=config)
|
||||
model.eval()
|
||||
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].size()),
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
|
||||
|
||||
|
||||
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = AlbertForMaskedLM(config=config)
|
||||
model.eval()
|
||||
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"prediction_scores": prediction_scores,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["prediction_scores"].size()),
|
||||
[self.batch_size, self.seq_length, self.vocab_size])
|
||||
self.check_loss_output(result)
|
||||
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(config, input_ids, token_type_ids, input_mask,
|
||||
sequence_labels, token_labels, choice_labels) = config_and_inputs
|
||||
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = AlbertModelTest.AlbertModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_albert_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_albert_model(*config_and_inputs)
|
||||
|
||||
def test_for_masked_lm(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_model_from_pretrained(self):
|
||||
cache_dir = "/tmp/transformers_test/"
|
||||
for model_name in list(ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
model = AlbertModel.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Загрузка…
Ссылка в новой задаче