include tf gpt2 tests for attn mask and past variable (#3122)
This commit is contained in:
Родитель
256cbbc4a2
Коммит
932eab943d
|
@ -30,6 +30,7 @@ if is_tf_available():
|
|||
TFGPT2LMHeadModel,
|
||||
TFGPT2DoubleHeadsModel,
|
||||
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
|
||||
shape_list,
|
||||
)
|
||||
|
||||
|
||||
|
@ -167,6 +168,73 @@ class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
|
|||
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
|
||||
)
|
||||
|
||||
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||||
model = TFGPT2Model(config=config)
|
||||
|
||||
# first forward pass
|
||||
output, past = model(input_ids, token_type_ids=token_type_ids)
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||||
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
|
||||
|
||||
# append to next input_ids and token_type_ids
|
||||
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
||||
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
|
||||
|
||||
output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
|
||||
output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
||||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
||||
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
||||
|
||||
# test that outputs are equal for slice
|
||||
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
|
||||
|
||||
def create_and_check_gpt2_model_attention_mask_past(
|
||||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||||
):
|
||||
model = TFGPT2Model(config=config)
|
||||
|
||||
# create attention mask
|
||||
half_seq_length = self.seq_length // 2
|
||||
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
|
||||
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
|
||||
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
|
||||
|
||||
# first forward pass
|
||||
output, past = model(input_ids, attention_mask=attn_mask)
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||||
|
||||
# change a random masked slice from input_ids
|
||||
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
|
||||
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
|
||||
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
|
||||
condition = tf.transpose(
|
||||
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
|
||||
)
|
||||
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
|
||||
|
||||
# append to next input_ids and attn_mask
|
||||
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
||||
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
|
||||
|
||||
# get two different outputs
|
||||
output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
|
||||
output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
||||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
||||
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
||||
|
||||
# test that outputs are equal for slice
|
||||
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
|
||||
|
||||
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||||
model = TFGPT2LMHeadModel(config=config)
|
||||
inputs = {
|
||||
|
@ -237,6 +305,14 @@ class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
|
|||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
|
||||
|
||||
def test_gpt2_model_past(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)
|
||||
|
||||
def test_gpt2_model_att_mask_past(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)
|
||||
|
||||
def test_gpt2_lm_head(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)
|
||||
|
|
Загрузка…
Ссылка в новой задаче