[LED] Correct Docs (#10419)
* correct docs * correct tf model docs as well
This commit is contained in:
Родитель
7fc686efb1
Коммит
d03695f3a2
|
@ -1516,8 +1516,17 @@ LED_INPUTS_DOCSTRING = r"""
|
|||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
Provide for translation and summarization training. By default, the model will create this tensor by
|
||||
shifting the :obj:`input_ids` to the right, following the paper.
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`~transformers.LedTokenizer`. See
|
||||
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
|
||||
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
|
||||
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
|
||||
:obj:`past_key_values`).
|
||||
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
|
||||
also be used by default.
|
||||
|
|
|
@ -1533,9 +1533,18 @@ LED_INPUTS_DOCSTRING = r"""
|
|||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
Provide for translation and summarization training. By default, the model will create this tensor by
|
||||
shifting the input_ids right, following the paper.
|
||||
decoder_input_ids (:obj:`tf.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`~transformers.LedTokenizer`. See
|
||||
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
|
||||
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
|
||||
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
|
||||
:obj:`past_key_values`).
|
||||
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
||||
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
||||
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
|
||||
|
|
Загрузка…
Ссылка в новой задаче