* Create README.md

* Update model_cards/MoseliMotsoehli/TswanaBert/README.md

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
Moseli Motsoehli 2020-06-30 23:01:51 -10:00 коммит произвёл GitHub
Родитель 298bdab18a
Коммит d60d231ea4
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 72 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,72 @@
---
language: setswana
---
# TswanaBert
## Model Description.
TswanaBERT is a transformers model pretrained on a corpus of Setswana data in a self-supervised fashion by masking part of the input words and training to predict the masks.
## Intended uses & limitations
The model can be used for either masked language modeling or next word prediction. it can also be fine-tuned for a specifict application.
#### How to use
```python
>>> from transformers import pipeline
>>> from transformers import AutoTokenizer, AutoModelWithLMHead
>>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/TswanaBert")
>>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/TswanaBert")
>>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer)
>>> unmasker("Ntshopotse <mask> e godile.")
[{'score': 0.32749542593955994,
'sequence': '<s>Ntshopotse setse e godile.</s>',
'token': 538,
'token_str': 'Ġsetse'},
{'score': 0.060260992497205734,
'sequence': '<s>Ntshopotse le e godile.</s>',
'token': 270,
'token_str': 'Ġle'},
{'score': 0.058460816740989685,
'sequence': '<s>Ntshopotse bone e godile.</s>',
'token': 364,
'token_str': 'Ġbone'},
{'score': 0.05694682151079178,
'sequence': '<s>Ntshopotse ga e godile.</s>',
'token': 298,
'token_str': 'Ġga'},
{'score': 0.0565204992890358,
'sequence': '<s>Ntshopotse, e godile.</s>',
'token': 16,
'token_str': ','}]
```
#### Limitations and bias
The model is trained on a fairly small collection of setwana, mostly from news articles and creative writtings, and so is not representative enough of the language as yet.
## Training data
The largest portion of this dataset (10k) lines of text, comes from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download)
The I then added 200 more phrases and sentences by scrapping following sites. I continue to expand the dataset
* http://setswana.blogspot.com/
* https://omniglot.com/writing/tswana.php
* http://www.dailynews.gov.bw/
* http://www.mmegi.bw/index.php
* https://tsena.co.bw
* http://www.botswana.co.za/Cultural_Issues-travel/botswana-country-guide-en-route.html
## Training procedure
The model was trained on a google colab Tesla T4 GPU for 200 epochs with a batch size of 64, on 13446 learned tokens.
Other model training configuration setting can be found [here](https://s3.amazonaws.com/models.huggingface.co/bert/MoseliMotsoehli/TswanaBert/config.json)
### BibTeX entry and citation info
```bibtex
@inproceedings{author = {Moseli Motsoehli},
year={2020}
}
```