Create README.md (#5422)
* Create README.md * Update model_cards/MoseliMotsoehli/TswanaBert/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
Родитель
298bdab18a
Коммит
d60d231ea4
|
@ -0,0 +1,72 @@
|
|||
---
|
||||
language: setswana
|
||||
---
|
||||
|
||||
# TswanaBert
|
||||
|
||||
## Model Description.
|
||||
TswanaBERT is a transformers model pretrained on a corpus of Setswana data in a self-supervised fashion by masking part of the input words and training to predict the masks.
|
||||
|
||||
## Intended uses & limitations
|
||||
The model can be used for either masked language modeling or next word prediction. it can also be fine-tuned for a specifict application.
|
||||
|
||||
#### How to use
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> from transformers import AutoTokenizer, AutoModelWithLMHead
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/TswanaBert")
|
||||
>>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/TswanaBert")
|
||||
>>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
||||
>>> unmasker("Ntshopotse <mask> e godile.")
|
||||
|
||||
[{'score': 0.32749542593955994,
|
||||
'sequence': '<s>Ntshopotse setse e godile.</s>',
|
||||
'token': 538,
|
||||
'token_str': 'Ġsetse'},
|
||||
{'score': 0.060260992497205734,
|
||||
'sequence': '<s>Ntshopotse le e godile.</s>',
|
||||
'token': 270,
|
||||
'token_str': 'Ġle'},
|
||||
{'score': 0.058460816740989685,
|
||||
'sequence': '<s>Ntshopotse bone e godile.</s>',
|
||||
'token': 364,
|
||||
'token_str': 'Ġbone'},
|
||||
{'score': 0.05694682151079178,
|
||||
'sequence': '<s>Ntshopotse ga e godile.</s>',
|
||||
'token': 298,
|
||||
'token_str': 'Ġga'},
|
||||
{'score': 0.0565204992890358,
|
||||
'sequence': '<s>Ntshopotse, e godile.</s>',
|
||||
'token': 16,
|
||||
'token_str': ','}]
|
||||
```
|
||||
|
||||
#### Limitations and bias
|
||||
The model is trained on a fairly small collection of setwana, mostly from news articles and creative writtings, and so is not representative enough of the language as yet.
|
||||
|
||||
## Training data
|
||||
|
||||
The largest portion of this dataset (10k) lines of text, comes from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download)
|
||||
|
||||
The I then added 200 more phrases and sentences by scrapping following sites. I continue to expand the dataset
|
||||
|
||||
* http://setswana.blogspot.com/
|
||||
* https://omniglot.com/writing/tswana.php
|
||||
* http://www.dailynews.gov.bw/
|
||||
* http://www.mmegi.bw/index.php
|
||||
* https://tsena.co.bw
|
||||
* http://www.botswana.co.za/Cultural_Issues-travel/botswana-country-guide-en-route.html
|
||||
|
||||
## Training procedure
|
||||
The model was trained on a google colab Tesla T4 GPU for 200 epochs with a batch size of 64, on 13446 learned tokens.
|
||||
Other model training configuration setting can be found [here](https://s3.amazonaws.com/models.huggingface.co/bert/MoseliMotsoehli/TswanaBert/config.json)
|
||||
|
||||
### BibTeX entry and citation info
|
||||
|
||||
```bibtex
|
||||
@inproceedings{author = {Moseli Motsoehli},
|
||||
year={2020}
|
||||
}
|
||||
```
|
Загрузка…
Ссылка в новой задаче