[Model card] SinhalaBERTo model. (#7558)

* [Model card] SinhalaBERTo model.

This is the model card for keshan/SinhalaBERTo model.

* Update model_cards/keshan/SinhalaBERTo/README.md

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
Keshan 2020-10-08 02:10:52 +05:30 коммит произвёл GitHub
Родитель 167bce56f2
Коммит e10d389561
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 37 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,37 @@
---
language: si
tags:
- SinhalaBERTo
- Sinhala
- roberta
datasets:
- oscar
---
### Overview
This is a slightly smaller model trained on [OSCAR](https://oscar-corpus.com/) Sinhala dedup dataset. As Sinhala is one of those low resource languages, there are only a handful of models been trained. So, this would be a great place to start training for more downstream tasks.
## Model Specification
The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications:
1. vocab_size=52000
2. max_position_embeddings=514
3. num_attention_heads=12
4. num_hidden_layers=6
5. type_vocab_size=1
## How to Use
You can use this model directly with a pipeline for masked language modeling:
```py
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
model = BertForMaskedLM.from_pretrained("keshan/SinhalaBERTo")
tokenizer = BertTokenizer.from_pretrained("keshan/SinhalaBERTo")
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
fill_mask("මම ගෙදර <mask>.")
```