New run_seq2seq script (#9605)
* New run_seq2seq script * Add tests * Mark as slow * Update examples/seq2seq/run_seq2seq.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update src/transformers/data/data_collator.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/transformers/data/data_collator.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Address review comments Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
Родитель
fa876aee2a
Коммит
e4c06ed664
|
@ -0,0 +1,499 @@
|
|||
# coding=utf-8
|
||||
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Fine-tuning the library models for sequence to sequence.
|
||||
"""
|
||||
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_metric
|
||||
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
DataCollatorForSeq2Seq,
|
||||
HfArgumentParser,
|
||||
MBartTokenizer,
|
||||
Seq2SeqTrainer,
|
||||
Seq2SeqTrainingArguments,
|
||||
default_data_collator,
|
||||
set_seed,
|
||||
)
|
||||
from transformers.trainer_utils import is_main_process
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
task: str = field(
|
||||
default="summarization",
|
||||
metadata={
|
||||
"help": "The name of the task, should be summarization (or summarization_{dataset} for evaluating "
|
||||
"pegasus) or translation (or translation_{xx}_to_{yy})."
|
||||
},
|
||||
)
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
text_column: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
||||
)
|
||||
summary_column: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
|
||||
)
|
||||
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
||||
validation_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."},
|
||||
)
|
||||
max_source_length: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={
|
||||
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
},
|
||||
)
|
||||
max_target_length: Optional[int] = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
},
|
||||
)
|
||||
val_max_target_length: Optional[int] = field(
|
||||
default=142,
|
||||
metadata={
|
||||
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded. "
|
||||
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
||||
"during ``evaluate`` and ``predict``."
|
||||
},
|
||||
)
|
||||
pad_to_max_length: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether to pad all samples to model maximum sentence length. "
|
||||
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
||||
"efficient on GPU but very bad for TPU."
|
||||
},
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
max_val_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
source_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
|
||||
target_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
|
||||
eval_beams: Optional[int] = field(default=None, metadata={"help": "Number of beams to use for evaluation."})
|
||||
ignore_pad_token_for_loss: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
else:
|
||||
if self.train_file is not None:
|
||||
extension = self.train_file.split(".")[-1]
|
||||
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
||||
if self.validation_file is not None:
|
||||
extension = self.validation_file.split(".")[-1]
|
||||
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
||||
if not self.task.startswith("summarization") and not self.task.startswith("translation"):
|
||||
raise ValueError(
|
||||
"`task` should be summarization, summarization_{dataset}, translation or translation_{xx}_to_{yy}."
|
||||
)
|
||||
|
||||
|
||||
summarization_name_mapping = {
|
||||
"cnn_dailymail": ("article", "highlights"),
|
||||
"xsum": ("document", "summary"),
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
|
||||
)
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
# Set the verbosity to info of the Transformers logger (on main process only):
|
||||
if is_main_process(training_args.local_rank):
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
logger.info("Training/evaluation parameters %s", training_args)
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
||||
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For CSV/JSON files in the summarization task, this script will use the first column for the full texts and the
|
||||
# second column for the summaries (unless you specify column names for this with the `text_column` and
|
||||
# `summary_column` arguments).
|
||||
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
|
||||
# source and target languages (unless you adapt what follows).
|
||||
#
|
||||
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# download the dataset.
|
||||
if data_args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
|
||||
else:
|
||||
data_files = {}
|
||||
if data_args.train_file is not None:
|
||||
data_files["train"] = data_args.train_file
|
||||
extension = data_args.train_file.split(".")[-1]
|
||||
if data_args.validation_file is not None:
|
||||
data_files["validation"] = data_args.validation_file
|
||||
extension = data_args.validation_file.split(".")[-1]
|
||||
datasets = load_dataset(extension, data_files=data_files)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
# Set decoder_start_token_id
|
||||
if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer):
|
||||
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
|
||||
if model.config.decoder_start_token_id is None:
|
||||
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to tokenize inputs and targets.
|
||||
if training_args.do_train:
|
||||
column_names = datasets["train"].column_names
|
||||
else:
|
||||
column_names = datasets["validation"].column_names
|
||||
|
||||
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
|
||||
# ignore those attributes).
|
||||
if data_args.task.startswith("translation"):
|
||||
if data_args.source_lang is not None:
|
||||
tokenizer.src_lang = data_args.source_lang
|
||||
if data_args.target_lang is not None:
|
||||
tokenizer.tgt_lang = data_args.target_lang
|
||||
|
||||
# To serialize preprocess_function below, each of those four variables needs to be defined (even if we won't use
|
||||
# them all).
|
||||
source_lang, target_lang, text_column, summary_column = None, None, None, None
|
||||
|
||||
if data_args.task.startswith("summarization"):
|
||||
# Get the column names for input/target.
|
||||
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
|
||||
if data_args.text_column is None:
|
||||
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
||||
else:
|
||||
text_column = data_args.text_column
|
||||
if data_args.summary_column is None:
|
||||
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
||||
else:
|
||||
summary_column = data_args.summary_column
|
||||
else:
|
||||
# Get the language codes for input/target.
|
||||
lang_search = re.match("translation_([a-z]+)_to_([a-z]+)", data_args.task)
|
||||
if data_args.source_lang is not None:
|
||||
source_lang = data_args.source_lang.split("_")[0]
|
||||
else:
|
||||
assert (
|
||||
lang_search is not None
|
||||
), "Provide a source language via --source_lang or rename your task 'translation_xx_to_yy'."
|
||||
source_lang = lang_search.groups()[0]
|
||||
|
||||
if data_args.target_lang is not None:
|
||||
target_lang = data_args.target_lang.split("_")[0]
|
||||
else:
|
||||
assert (
|
||||
lang_search is not None
|
||||
), "Provide a target language via --target_lang or rename your task 'translation_xx_to_yy'."
|
||||
target_lang = lang_search.groups()[1]
|
||||
|
||||
# Temporarily set max_target_length for training.
|
||||
max_target_length = data_args.max_target_length
|
||||
padding = "max_length" if data_args.pad_to_max_length else False
|
||||
|
||||
def preprocess_function(examples):
|
||||
if data_args.task.startswith("translation"):
|
||||
inputs = [ex[source_lang] for ex in examples["translation"]]
|
||||
targets = [ex[target_lang] for ex in examples["translation"]]
|
||||
else:
|
||||
inputs = examples[text_column]
|
||||
targets = examples[summary_column]
|
||||
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
|
||||
|
||||
# Setup the tokenizer for targets
|
||||
with tokenizer.as_target_tokenizer():
|
||||
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
|
||||
|
||||
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
||||
# padding in the loss.
|
||||
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
||||
labels["input_ids"] = [
|
||||
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||||
]
|
||||
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
if training_args.do_train:
|
||||
train_dataset = datasets["train"]
|
||||
if data_args.max_train_samples is not None:
|
||||
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
||||
train_dataset = train_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
)
|
||||
|
||||
if training_args.do_eval:
|
||||
max_target_length = data_args.val_max_target_length
|
||||
eval_dataset = datasets["validation"]
|
||||
if data_args.max_val_samples is not None:
|
||||
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
|
||||
eval_dataset = eval_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
)
|
||||
|
||||
# Data collator
|
||||
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
||||
if data_args.pad_to_max_length:
|
||||
data_collator = default_data_collator
|
||||
else:
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, label_pad_token_id=label_pad_token_id)
|
||||
|
||||
# Metric
|
||||
metric_name = "rouge" if data_args.task.startswith("summarization") else "sacrebleu"
|
||||
metric = load_metric(metric_name)
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
if data_args.ignore_pad_token_for_loss:
|
||||
# Replace -100 in the labels as we can't decode them.
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
# Some simple post-processing
|
||||
decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
decoded_labels = [label.strip() for label in decoded_labels]
|
||||
if metric_name == "sacrebleu":
|
||||
decoded_labels = [[label] for label in decoded_labels]
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
|
||||
# Extract a few results from ROUGE
|
||||
if metric_name == "rouge":
|
||||
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
||||
else:
|
||||
result = {"bleu": result["score"]}
|
||||
|
||||
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
||||
result["gen_len"] = np.mean(prediction_lens)
|
||||
|
||||
return result
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset if training_args.do_train else None,
|
||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(
|
||||
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
|
||||
)
|
||||
trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
|
||||
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
|
||||
if trainer.is_world_process_zero():
|
||||
with open(output_train_file, "w") as writer:
|
||||
logger.info("***** Train results *****")
|
||||
for key, value in sorted(train_result.metrics.items()):
|
||||
logger.info(f" {key} = {value}")
|
||||
writer.write(f"{key} = {value}\n")
|
||||
|
||||
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
|
||||
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
results = trainer.evaluate()
|
||||
|
||||
output_eval_file = os.path.join(training_args.output_dir, "eval_results_seq2seq.txt")
|
||||
if trainer.is_world_process_zero():
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
for key, value in sorted(results.items()):
|
||||
logger.info(f" {key} = {value}")
|
||||
writer.write(f"{key} = {value}\n")
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -23,7 +23,7 @@ from unittest.mock import patch
|
|||
import torch
|
||||
|
||||
from transformers.file_utils import is_apex_available
|
||||
from transformers.testing_utils import TestCasePlus, require_torch_non_multi_gpu_but_fix_me, torch_device
|
||||
from transformers.testing_utils import TestCasePlus, require_torch_non_multi_gpu_but_fix_me, slow, torch_device
|
||||
|
||||
|
||||
SRC_DIRS = [
|
||||
|
@ -35,6 +35,7 @@ SRC_DIRS = [
|
|||
"language-modeling",
|
||||
"multiple-choice",
|
||||
"question-answering",
|
||||
"seq2seq",
|
||||
]
|
||||
]
|
||||
sys.path.extend(SRC_DIRS)
|
||||
|
@ -47,6 +48,7 @@ if SRC_DIRS is not None:
|
|||
import run_mlm
|
||||
import run_ner
|
||||
import run_qa as run_squad
|
||||
import run_seq2seq
|
||||
import run_swag
|
||||
|
||||
|
||||
|
@ -259,3 +261,67 @@ class ExamplesTests(TestCasePlus):
|
|||
with patch.object(sys, "argv", testargs + [model_type, model_name]):
|
||||
result = run_generation.main()
|
||||
self.assertGreaterEqual(len(result[0]), 10)
|
||||
|
||||
@slow
|
||||
@require_torch_non_multi_gpu_but_fix_me
|
||||
def test_run_seq2seq_summarization(self):
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
tmp_dir = self.get_auto_remove_tmp_dir()
|
||||
testargs = f"""
|
||||
run_seq2seq.py
|
||||
--model_name_or_path t5-small
|
||||
--task summarization
|
||||
--train_file tests/fixtures/tests_samples/xsum/sample.json
|
||||
--validation_file tests/fixtures/tests_samples/xsum/sample.json
|
||||
--output_dir {tmp_dir}
|
||||
--overwrite_output_dir
|
||||
--max_steps=50
|
||||
--warmup_steps=8
|
||||
--do_train
|
||||
--do_eval
|
||||
--learning_rate=2e-4
|
||||
--per_device_train_batch_size=2
|
||||
--per_device_eval_batch_size=1
|
||||
--predict_with_generate
|
||||
""".split()
|
||||
|
||||
with patch.object(sys, "argv", testargs):
|
||||
result = run_seq2seq.main()
|
||||
|
||||
self.assertGreaterEqual(result["eval_rouge1"], 10)
|
||||
self.assertGreaterEqual(result["eval_rouge2"], 2)
|
||||
self.assertGreaterEqual(result["eval_rougeL"], 7)
|
||||
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
|
||||
|
||||
@slow
|
||||
@require_torch_non_multi_gpu_but_fix_me
|
||||
def test_run_seq2seq_translation(self):
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
tmp_dir = self.get_auto_remove_tmp_dir()
|
||||
testargs = f"""
|
||||
run_seq2seq.py
|
||||
--model_name_or_path sshleifer/student_marian_en_ro_6_1
|
||||
--task translation_en_to_ro
|
||||
--train_file tests/fixtures/tests_samples/wmt16/sample.json
|
||||
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
|
||||
--output_dir {tmp_dir}
|
||||
--overwrite_output_dir
|
||||
--max_steps=50
|
||||
--warmup_steps=8
|
||||
--do_train
|
||||
--do_eval
|
||||
--learning_rate=3e-3
|
||||
--per_device_train_batch_size=2
|
||||
--per_device_eval_batch_size=1
|
||||
--predict_with_generate
|
||||
--source_lang en_XX
|
||||
--target_lang ro_RO
|
||||
""".split()
|
||||
|
||||
with patch.object(sys, "argv", testargs):
|
||||
result = run_seq2seq.main()
|
||||
self.assertGreaterEqual(result["eval_bleu"], 30)
|
||||
|
|
|
@ -324,6 +324,7 @@ if is_torch_available():
|
|||
"DataCollator",
|
||||
"DataCollatorForLanguageModeling",
|
||||
"DataCollatorForPermutationLanguageModeling",
|
||||
"DataCollatorForSeq2Seq",
|
||||
"DataCollatorForSOP",
|
||||
"DataCollatorForTokenClassification",
|
||||
"DataCollatorForWholeWordMask",
|
||||
|
@ -1395,6 +1396,7 @@ if TYPE_CHECKING:
|
|||
DataCollator,
|
||||
DataCollatorForLanguageModeling,
|
||||
DataCollatorForPermutationLanguageModeling,
|
||||
DataCollatorForSeq2Seq,
|
||||
DataCollatorForSOP,
|
||||
DataCollatorForTokenClassification,
|
||||
DataCollatorForWholeWordMask,
|
||||
|
|
|
@ -224,6 +224,63 @@ def tolist(x: Union[List[Any], torch.Tensor]):
|
|||
return x.tolist() if isinstance(x, torch.Tensor) else x
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForSeq2Seq:
|
||||
"""
|
||||
Data collator that will dynamically pad the inputs received, as well as the labels.
|
||||
|
||||
Args:
|
||||
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
||||
The tokenizer used for encoding the data.
|
||||
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
||||
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
||||
among:
|
||||
|
||||
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
||||
sequence is provided).
|
||||
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
||||
maximum acceptable input length for the model if that argument is not provided.
|
||||
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
||||
different lengths).
|
||||
max_length (:obj:`int`, `optional`):
|
||||
Maximum length of the returned list and optionally padding length (see above).
|
||||
pad_to_multiple_of (:obj:`int`, `optional`):
|
||||
If set will pad the sequence to a multiple of the provided value.
|
||||
|
||||
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
||||
7.5 (Volta).
|
||||
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
||||
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
|
||||
"""
|
||||
|
||||
tokenizer: PreTrainedTokenizerBase
|
||||
padding: Union[bool, str, PaddingStrategy] = True
|
||||
max_length: Optional[int] = None
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
label_pad_token_id: int = -100
|
||||
|
||||
def __call__(self, features):
|
||||
labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
|
||||
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
|
||||
# same length to return tensors.
|
||||
if labels is not None:
|
||||
max_label_length = max(len(l) for l in labels)
|
||||
padding_side = self.tokenizer.padding_side
|
||||
for feature in features:
|
||||
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
|
||||
feature["labels"] = (
|
||||
feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
|
||||
)
|
||||
|
||||
return self.tokenizer.pad(
|
||||
features,
|
||||
padding=self.padding,
|
||||
max_length=self.max_length,
|
||||
pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForLanguageModeling:
|
||||
"""
|
||||
|
|
|
@ -35,6 +35,11 @@ class DataCollatorForPermutationLanguageModeling:
|
|||
requires_pytorch(self)
|
||||
|
||||
|
||||
class DataCollatorForSeq2Seq:
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_pytorch(self)
|
||||
|
||||
|
||||
class DataCollatorForSOP:
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_pytorch(self)
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
{"translation": {"en": "Membership of Parliament: see Minutes", "ro": "Componenţa Parlamentului: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Approval of Minutes of previous sitting: see Minutes", "ro": "Aprobarea procesului-verbal al şedinţei precedente: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Membership of Parliament: see Minutes", "ro": "Componenţa Parlamentului: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Verification of credentials: see Minutes", "ro": "Verificarea prerogativelor: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Documents received: see Minutes", "ro": "Depunere de documente: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Written statements and oral questions (tabling): see Minutes", "ro": "Declaraţii scrise şi întrebări orale (depunere): consultaţi procesul-verbal"}}
|
||||
{"translation": {"en": "Petitions: see Minutes", "ro": "Petiţii: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Texts of agreements forwarded by the Council: see Minutes", "ro": "Transmiterea de către Consiliu a textelor acordurilor: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Action taken on Parliament's resolutions: see Minutes", "ro": "Cursul dat rezoluţiilor Parlamentului: a se vedea procesul-verbal"}}
|
||||
{"translation": {"en": "Agenda for next sitting: see Minutes", "ro": "Ordinea de zi a următoarei şedinţe: a se vedea procesul-verbal"}}
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Загрузка…
Ссылка в новой задаче