* configuration_squeezebert.py
thin wrapper around bert tokenizer
fix typos
wip sb model code
wip modeling_squeezebert.py. Next step is to get the multi-layer-output interface working
set up squeezebert to use BertModelOutput when returning results.
squeezebert documentation
formatting
allow head mask that is an array of [None, ..., None]
docs
docs cont'd
path to vocab
docs and pointers to cloud files (WIP)
line length and indentation
squeezebert model cards
formatting of model cards
untrack modeling_squeezebert_scratchpad.py
update aws paths to vocab and config files
get rid of stub of NSP code, and advise users to pretrain with mlm only
fix rebase issues
redo rebase of modeling_auto.py
fix issues with code formatting
more code format auto-fixes
move squeezebert before bert in tokenization_auto.py and modeling_auto.py because squeezebert inherits from bert
tests for squeezebert modeling and tokenization
fix typo
move squeezebert before bert in modeling_auto.py to fix inheritance problem
disable test_head_masking, since squeezebert doesn't yet implement head masking
fix issues exposed by the test_modeling_squeezebert.py
fix an issue exposed by test_tokenization_squeezebert.py
fix issue exposed by test_modeling_squeezebert.py
auto generated code style improvement
issue that we inherited from modeling_xxx.py: SqueezeBertForMaskedLM.forward() calls self.cls(), but there is no self.cls, and I think the goal was actually to call self.lm_head()
update copyright
resolve failing 'test_hidden_states_output' and remove unused encoder_hidden_states and encoder_attention_mask
docs
add integration test. rename squeezebert-mnli --> squeezebert/squeezebert-mnli
autogenerated formatting tweaks
integrate feedback from patrickvonplaten and sgugger to programming style and documentation strings
* tiny change to order of imports
* cleanup torch unittests: part 2
* remove trailing comma added by isort, and which breaks flake
* one more comma
* revert odd balls
* part 3: odd cases
* more ["key"] -> .key refactoring
* .numpy() is not needed
* more unncessary .numpy() removed
* more simplification
* TF outputs and test on BERT
* Albert to DistilBert
* All remaining TF models except T5
* Documentation
* One file forgotten
* TF outputs and test on BERT
* Albert to DistilBert
* All remaining TF models except T5
* Documentation
* One file forgotten
* Add new models and fix issues
* Quality improvements
* Add T5
* A bit of cleanup
* Fix for slow tests
* Style
* improve unit tests
this is a sample of one test according to the request in https://github.com/huggingface/transformers/issues/5973
before I apply it to the rest
* batch 1
* batch 2
* batch 3
* batch 4
* batch 5
* style
* non-tf template
* last deletion of check_loss_output
* Switch from return_tuple to return_dict
* Fix test
* [WIP] Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleC… (#5614)
* Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleChoice} models and tests
* AutoModels
Tiny tweaks
* Style
* Final changes before merge
* Re-order for simpler review
* Final fixes
* Addressing @sgugger's comments
* Test MultipleChoice
* Rework TF trainer (#6038)
* Fully rework training/prediction loops
* fix method name
* Fix variable name
* Fix property name
* Fix scope
* Fix method name
* Fix tuple index
* Fix tuple index
* Fix indentation
* Fix variable name
* fix eval before log
* Add drop remainder for test dataset
* Fix step number + fix logging datetime
* fix eval loss value
* use global step instead of step + fix logging at step 0
* Fix logging datetime
* Fix global_step usage
* Fix breaking loop + logging datetime
* Fix step in prediction loop
* Fix step breaking
* Fix train/test loops
* Force TF at least 2.2 for the trainer
* Use assert_cardinality to facilitate the dataset size computation
* Log steps per epoch
* Make tfds compliant with TPU
* Make tfds compliant with TPU
* Use TF dataset enumerate instead of the Python one
* revert previous commit
* Fix data_dir
* Apply style
* rebase on master
* Address Sylvain's comments
* Address Sylvain's and Lysandre comments
* Trigger CI
* Remove unused import
* Switch from return_tuple to return_dict
* Fix test
* Add recent model
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Plu <plu.julien@gmail.com>
* remove references to old API in docstring - update data processors
* style
* fix tests - better type checking error messages
* better type checking
* include awesome fix by @LysandreJik for #5310
* updated doc and examples
* DOC: Replace instances of ``config.output_attentions`` with function argument ``output_attentions``
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* Fix further regressions in tests relating to `output_attentions`
Ensure proper propagation of `output_attentions` as a function parameter
to all model subclasses
* Fix more regressions in `test_output_attentions`
* Fix issues with BertEncoder
* Rename related variables to `output_attentions`
* fix pytorch tests
* fix bert and gpt2 tf
* Fix most TF tests for `test_output_attentions`
* Fix linter errors and more TF tests
* fix conflicts
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix pytorch tests
* fix conflicts
* fix conflicts
* Fix linter errors and more TF tests
* fix tf tests
* make style
* fix isort
* improve output_attentions
* improve tensorflow
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Kill model archive maps
* Fixup
* Also kill model_archive_map for MaskedBertPreTrainedModel
* Unhook config_archive_map
* Tokenizers: align with model id changes
* make style && make quality
* Fix CI
* First pass on utility classes and python tokenizers
* finishing cleanup pass
* style and quality
* Fix tests
* Updating following @mfuntowicz comment
* style and quality
* Fix Roberta
* fix batch_size/seq_length inBatchEncoding
* add alignement methods + tests
* Fix OpenAI and Transfo-XL tokenizers
* adding trim_offsets=True default for GPT2 et RoBERTa
* style and quality
* fix tests
* add_prefix_space in roberta
* bump up tokenizers to rc7
* style
* unfortunately tensorfow does like these - removing shape/seq_len for now
* Update src/transformers/tokenization_utils.py
Co-Authored-By: Stefan Schweter <stefan@schweter.it>
* Adding doc and docstrings
* making flake8 happy
Co-authored-by: Stefan Schweter <stefan@schweter.it>