362 строки
13 KiB
Python
362 строки
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from .utils import require_torch, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import (
|
|
ElectraConfig,
|
|
ElectraModel,
|
|
ElectraForMaskedLM,
|
|
ElectraForTokenClassification,
|
|
ElectraForPreTraining,
|
|
ElectraForSequenceClassification,
|
|
ElectraForQuestionAnswering,
|
|
)
|
|
from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
@require_torch
|
|
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(
|
|
ElectraModel,
|
|
ElectraForPreTraining,
|
|
ElectraForMaskedLM,
|
|
ElectraForTokenClassification,
|
|
ElectraForSequenceClassification,
|
|
ElectraForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
|
|
class ElectraModelTester(object):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
|
|
|
|
config = ElectraConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
)
|
|
|
|
def check_loss_output(self, result):
|
|
self.parent.assertListEqual(list(result["loss"].size()), [])
|
|
|
|
def create_and_check_electra_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
model = ElectraModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
(sequence_output,) = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
(sequence_output,) = model(input_ids, token_type_ids=token_type_ids)
|
|
(sequence_output,) = model(input_ids)
|
|
|
|
result = {
|
|
"sequence_output": sequence_output,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
|
|
)
|
|
|
|
def create_and_check_electra_for_masked_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
model = ElectraForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, prediction_scores = model(
|
|
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"prediction_scores": prediction_scores,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
|
|
)
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_electra_for_token_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ElectraForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, logits = model(
|
|
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
|
|
)
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_electra_for_pretraining(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ElectraForPreTraining(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, logits = model(
|
|
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length])
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_electra_for_sequence_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ElectraForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, logits = model(
|
|
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_electra_for_question_answering(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
):
|
|
model = ElectraForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, start_logits, end_logits = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"start_logits": start_logits,
|
|
"end_logits": end_logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
|
|
self.check_loss_output(result)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
fake_token_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = ElectraModelTest.ElectraModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_electra_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_pre_training(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = ElectraModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|