huggingface-transformers/tests/test_modeling_tf_auto.py

131 строка
4.9 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import unittest
from transformers import is_tf_available
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
TFAutoModel,
TFBertModel,
TFAutoModelForPreTraining,
TFBertForPreTraining,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFRobertaForMaskedLM,
TFAutoModelForSequenceClassification,
TFBertForSequenceClassification,
TFAutoModelForQuestionAnswering,
TFBertForQuestionAnswering,
)
@require_tf
class TFAutoModelTest(unittest.TestCase):
@slow
def test_model_from_pretrained(self):
import h5py
self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))
logging.basicConfig(level=logging.INFO)
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = TFAutoModel.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertModel)
@slow
def test_model_for_pretraining_from_pretrained(self):
import h5py
self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))
logging.basicConfig(level=logging.INFO)
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = TFAutoModelForPreTraining.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertForPreTraining)
@slow
def test_lmhead_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = TFAutoModelWithLMHead.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertForMaskedLM)
@slow
def test_sequence_classification_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertForSequenceClassification)
@slow
def test_question_answering_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertForQuestionAnswering)
def test_from_pretrained_identifier(self):
logging.basicConfig(level=logging.INFO)
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, TFBertForMaskedLM)
self.assertEqual(model.num_parameters(), 14830)
self.assertEqual(model.num_parameters(only_trainable=True), 14830)
def test_from_identifier_from_model_type(self):
logging.basicConfig(level=logging.INFO)
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
self.assertIsInstance(model, TFRobertaForMaskedLM)
self.assertEqual(model.num_parameters(), 14830)
self.assertEqual(model.num_parameters(only_trainable=True), 14830)