huggingface-transformers/model_cards/activebus/BERT-XD_Review
Hu Xu 9907dc523a
add BERT trained from review corpus. (#4405)
* add model_cards for BERT trained on reviews.

* add link to repository.

* refine README.md for each review model
2020-05-20 09:42:35 -04:00
..
README.md add BERT trained from review corpus. (#4405) 2020-05-20 09:42:35 -04:00

README.md

ReviewBERT

BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects.
Please visit https://github.com/howardhsu/BERT-for-RRC-ABSA for details.

BERT-XD_Review is a cross-domain (beyond just laptop and restaurant) language model, where each example is from a single product / restaurant with the same rating, post-trained (fine-tuned) on a combination of 5-core Amazon reviews and all Yelp data, expected to be 22 G in total. It is trained for 4 epochs on bert-base-uncased. The preprocessing code here.

Model Description

The original model is from BERT-base-uncased.
Models are post-trained from Amazon Dataset and Yelp Dataset.

Instructions

Loading the post-trained weights are as simple as, e.g.,

import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-XD_Review")
model = AutoModel.from_pretrained("activebus/BERT-XD_Review")

Evaluation Results

Check our NAACL paper BERT_Review is expected to have similar performance on domain-specific tasks (such as aspect extraction) as BERT-DK, but much better on general tasks such as aspect sentiment classification (different domains mostly share similar sentiment words).

Citation

If you find this work useful, please cite as following.

@inproceedings{xu_bert2019,
    title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis",
    author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.",
    booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics",
    month = "jun",
    year = "2019",
}