1117 строки
41 KiB
Python
1117 строки
41 KiB
Python
# coding=utf-8
|
|
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
|
|
from transformers import BartTokenizer, T5Tokenizer
|
|
from transformers.file_utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available
|
|
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
|
|
from transformers.models.dpr.tokenization_dpr import DPRQuestionEncoderTokenizer
|
|
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import (
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
require_torch_non_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from .test_modeling_bart import BartModelTester
|
|
from .test_modeling_dpr import DPRModelTester
|
|
from .test_modeling_t5 import T5ModelTester
|
|
|
|
|
|
TOLERANCE = 1e-3
|
|
|
|
T5_SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
|
|
|
|
if is_torch_available() and is_datasets_available() and is_faiss_available():
|
|
import torch
|
|
from datasets import Dataset
|
|
|
|
import faiss
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoModelForSeq2SeqLM,
|
|
RagConfig,
|
|
RagModel,
|
|
RagRetriever,
|
|
RagSequenceForGeneration,
|
|
RagTokenForGeneration,
|
|
RagTokenizer,
|
|
)
|
|
from transformers.modeling_outputs import BaseModelOutput
|
|
|
|
|
|
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
|
|
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
|
|
if a is None and b is None:
|
|
return True
|
|
try:
|
|
if torch.allclose(a, b, atol=atol):
|
|
return True
|
|
raise
|
|
except Exception:
|
|
msg = f"{a} != {b}"
|
|
if prefix:
|
|
msg = prefix + ": " + msg
|
|
raise AssertionError(msg)
|
|
|
|
|
|
def require_retrieval(test_case):
|
|
"""
|
|
Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
|
|
:class:`~transformers.RagRetriever`.
|
|
|
|
These tests are skipped when respective libraries are not installed.
|
|
|
|
"""
|
|
if not (is_torch_available() and is_datasets_available() and is_faiss_available()):
|
|
test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case)
|
|
return test_case
|
|
|
|
|
|
@require_torch
|
|
@require_retrieval
|
|
@require_sentencepiece
|
|
class RagTestMixin:
|
|
|
|
all_model_classes = (
|
|
(RagModel, RagTokenForGeneration, RagSequenceForGeneration)
|
|
if is_torch_available() and is_datasets_available() and is_faiss_available()
|
|
else ()
|
|
)
|
|
|
|
retrieval_vector_size = 32
|
|
n_docs = 3
|
|
max_combined_length = 16
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
# DPR tok
|
|
vocab_tokens = [
|
|
"[UNK]",
|
|
"[CLS]",
|
|
"[SEP]",
|
|
"[PAD]",
|
|
"[MASK]",
|
|
"want",
|
|
"##want",
|
|
"##ed",
|
|
"wa",
|
|
"un",
|
|
"runn",
|
|
"##ing",
|
|
",",
|
|
"low",
|
|
"lowest",
|
|
]
|
|
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
|
|
os.makedirs(dpr_tokenizer_path, exist_ok=True)
|
|
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
|
|
|
# BART tok
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
|
|
os.makedirs(bart_tokenizer_path, exist_ok=True)
|
|
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB)
|
|
t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer")
|
|
t5_tokenizer.save_pretrained(t5_tokenizer_path)
|
|
|
|
@cached_property
|
|
def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
|
|
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
|
|
|
|
@cached_property
|
|
def bart_tokenizer(self) -> BartTokenizer:
|
|
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
|
|
|
|
@cached_property
|
|
def t5_tokenizer(self) -> BartTokenizer:
|
|
return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer"))
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def get_retriever(self, config):
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"id": ["0", "1", "3"],
|
|
"text": ["foo", "bar", "qux"],
|
|
"title": ["Foo", "Bar", "Qux"],
|
|
"embeddings": [
|
|
np.ones(self.retrieval_vector_size),
|
|
2 * np.ones(self.retrieval_vector_size),
|
|
3 * np.ones(self.retrieval_vector_size),
|
|
],
|
|
}
|
|
)
|
|
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
|
|
tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer
|
|
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
|
|
mock_load_dataset.return_value = dataset
|
|
retriever = RagRetriever(
|
|
config,
|
|
question_encoder_tokenizer=self.dpr_tokenizer,
|
|
generator_tokenizer=tokenizer,
|
|
)
|
|
return retriever
|
|
|
|
def check_model_with_retriever(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
|
|
model.eval()
|
|
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
# logits
|
|
self.assertEqual(
|
|
outputs.logits.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
|
|
)
|
|
# generator encoder last hidden states
|
|
self.assertEqual(
|
|
outputs.generator_enc_last_hidden_state.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
|
|
)
|
|
# doc scores
|
|
self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))
|
|
|
|
def check_model_generate_from_context_input_ids(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
retriever = self.get_retriever(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model.eval()
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
|
|
|
out = retriever(
|
|
input_ids,
|
|
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
|
prefix=config.generator.prefix,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
|
|
out["context_input_ids"],
|
|
out["context_attention_mask"],
|
|
out["retrieved_doc_embeds"],
|
|
)
|
|
|
|
# cast
|
|
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
|
|
context_input_ids = context_input_ids.to(input_ids)
|
|
context_attention_mask = context_attention_mask.to(input_ids)
|
|
|
|
# compute doc_scores
|
|
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
|
|
1
|
|
)
|
|
|
|
outputs = model.generate(
|
|
context_input_ids=context_input_ids,
|
|
context_attention_mask=context_attention_mask,
|
|
doc_scores=doc_scores,
|
|
do_deduplication=True,
|
|
)
|
|
|
|
self.assertIsNotNone(outputs)
|
|
|
|
def check_model_generate(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
for model_class in self.all_model_classes[1:]:
|
|
model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
|
|
model.eval()
|
|
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
outputs = model.generate(
|
|
input_ids=input_ids,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
decoder_start_token_id=config.generator.eos_token_id,
|
|
)
|
|
|
|
self.assertIsNotNone(outputs)
|
|
|
|
def check_model_without_retriever(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
retriever = self.get_retriever(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model.eval()
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
|
|
|
out = retriever(
|
|
input_ids,
|
|
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
|
prefix=config.generator.prefix,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
|
|
out["context_input_ids"],
|
|
out["context_attention_mask"],
|
|
out["retrieved_doc_embeds"],
|
|
)
|
|
|
|
# cast
|
|
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
|
|
context_input_ids = context_input_ids.to(input_ids)
|
|
context_attention_mask = context_attention_mask.to(input_ids)
|
|
|
|
# compute doc_scores
|
|
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
|
|
1
|
|
)
|
|
|
|
outputs = model(
|
|
context_input_ids=context_input_ids,
|
|
context_attention_mask=context_attention_mask,
|
|
doc_scores=doc_scores,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
# logits
|
|
self.assertEqual(
|
|
outputs.logits.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
|
|
)
|
|
# generator encoder last hidden states
|
|
self.assertEqual(
|
|
outputs.generator_enc_last_hidden_state.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
|
|
)
|
|
# doc scores
|
|
self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))
|
|
|
|
def check_model_custom_n_docs(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
retriever = self.get_retriever(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model.eval()
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
|
|
|
out = retriever(
|
|
input_ids,
|
|
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
|
prefix=config.generator.prefix,
|
|
return_tensors="pt",
|
|
n_docs=n_docs,
|
|
)
|
|
|
|
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
|
|
out["context_input_ids"],
|
|
out["context_attention_mask"],
|
|
out["retrieved_doc_embeds"],
|
|
)
|
|
|
|
# cast
|
|
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
|
|
context_input_ids = context_input_ids.to(input_ids)
|
|
context_attention_mask = context_attention_mask.to(input_ids)
|
|
|
|
# compute doc_scores
|
|
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
|
|
1
|
|
)
|
|
|
|
outputs = model(
|
|
context_input_ids=context_input_ids,
|
|
context_attention_mask=context_attention_mask,
|
|
doc_scores=doc_scores,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
n_docs=n_docs,
|
|
)
|
|
|
|
# logits
|
|
self.assertEqual(
|
|
outputs.logits.shape,
|
|
(n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
|
|
)
|
|
# generator encoder last hidden states
|
|
self.assertEqual(
|
|
outputs.generator_enc_last_hidden_state.shape,
|
|
(n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
|
|
)
|
|
# doc scores
|
|
self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs))
|
|
|
|
def check_model_with_mismatch_n_docs_value(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
retriever_n_docs,
|
|
generator_n_docs,
|
|
**kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
retriever = self.get_retriever(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model.eval()
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
|
|
|
out = retriever(
|
|
input_ids,
|
|
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
|
prefix=config.generator.prefix,
|
|
return_tensors="pt",
|
|
n_docs=retriever_n_docs,
|
|
)
|
|
|
|
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
|
|
out["context_input_ids"],
|
|
out["context_attention_mask"],
|
|
out["retrieved_doc_embeds"],
|
|
)
|
|
|
|
# cast
|
|
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
|
|
context_input_ids = context_input_ids.to(input_ids)
|
|
context_attention_mask = context_attention_mask.to(input_ids)
|
|
|
|
# compute doc_scores
|
|
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
|
|
1
|
|
)
|
|
|
|
self.assertRaises(
|
|
AssertionError,
|
|
model.__call__,
|
|
context_input_ids=context_input_ids,
|
|
context_attention_mask=context_attention_mask,
|
|
doc_scores=doc_scores,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
n_docs=generator_n_docs,
|
|
)
|
|
|
|
def check_model_with_encoder_outputs(
|
|
self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
|
|
):
|
|
self.assertIsNotNone(config.question_encoder)
|
|
self.assertIsNotNone(config.generator)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
|
|
model.eval()
|
|
|
|
self.assertTrue(model.config.is_encoder_decoder)
|
|
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state)
|
|
|
|
# run only generator
|
|
outputs = model(
|
|
encoder_outputs=encoder_outputs,
|
|
doc_scores=outputs.doc_scores,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
# logits
|
|
self.assertEqual(
|
|
outputs.logits.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
|
|
)
|
|
# generator encoder last hidden states
|
|
self.assertEqual(
|
|
outputs.generator_enc_last_hidden_state.shape,
|
|
(self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
|
|
)
|
|
# doc scores
|
|
self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))
|
|
|
|
def test_model_with_retriever(self):
|
|
inputs_dict = self.config_and_inputs
|
|
self.check_model_with_retriever(**inputs_dict)
|
|
|
|
def test_model_without_retriever(self):
|
|
inputs_dict = self.config_and_inputs
|
|
self.check_model_without_retriever(**inputs_dict)
|
|
|
|
def test_model_with_encoder_outputs(self):
|
|
inputs_dict = self.config_and_inputs
|
|
self.check_model_with_encoder_outputs(**inputs_dict)
|
|
|
|
def test_model_generate(self):
|
|
inputs_dict = self.config_and_inputs
|
|
self.check_model_generate(**inputs_dict)
|
|
|
|
def test_model_with_custom_n_docs(self):
|
|
inputs_dict = self.config_and_inputs
|
|
inputs_dict["n_docs"] = 1
|
|
self.check_model_custom_n_docs(**inputs_dict)
|
|
|
|
def test_model_with_mismatch_n_docs_value(self):
|
|
inputs_dict = self.config_and_inputs
|
|
inputs_dict["retriever_n_docs"] = 3
|
|
inputs_dict["generator_n_docs"] = 2
|
|
self.check_model_with_mismatch_n_docs_value(**inputs_dict)
|
|
|
|
|
|
@require_torch
|
|
@require_retrieval
|
|
class RagDPRBartTest(RagTestMixin, unittest.TestCase):
|
|
@cached_property
|
|
def config_and_inputs(self):
|
|
question_encoder_tester = DPRModelTester(self)
|
|
dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
|
|
generator_tester = BartModelTester(self)
|
|
bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common()
|
|
|
|
(question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
|
|
(generator_config, bart_inputs_dict) = bart_config_and_inputs
|
|
decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"]
|
|
|
|
config = RagConfig.from_question_encoder_generator_configs(
|
|
question_encoder_config,
|
|
generator_config,
|
|
n_docs=self.n_docs,
|
|
retrieval_vector_size=self.retrieval_vector_size,
|
|
max_combined_length=self.max_combined_length,
|
|
)
|
|
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
@require_retrieval
|
|
class RagDPRT5Test(RagTestMixin, unittest.TestCase):
|
|
@cached_property
|
|
def config_and_inputs(self):
|
|
question_encoder_tester = DPRModelTester(self)
|
|
dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
|
|
generator_tester = T5ModelTester(self, vocab_size=1100)
|
|
t5_config_and_inputs = generator_tester.prepare_config_and_inputs()
|
|
|
|
(question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
|
|
(generator_config, _, decoder_input_ids, _, decoder_attention_mask, _) = t5_config_and_inputs
|
|
config = RagConfig.from_question_encoder_generator_configs(
|
|
question_encoder_config,
|
|
generator_config,
|
|
n_docs=self.n_docs,
|
|
retrieval_vector_size=self.retrieval_vector_size,
|
|
max_combined_length=self.max_combined_length,
|
|
)
|
|
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
@require_retrieval
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
@require_torch_non_multi_gpu
|
|
class RagModelIntegrationTests(unittest.TestCase):
|
|
@cached_property
|
|
def sequence_model(self):
|
|
return (
|
|
RagSequenceForGeneration.from_pretrained_question_encoder_generator(
|
|
"facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
|
|
)
|
|
.to(torch_device)
|
|
.eval()
|
|
)
|
|
|
|
@cached_property
|
|
def token_model(self):
|
|
return (
|
|
RagTokenForGeneration.from_pretrained_question_encoder_generator(
|
|
"facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
|
|
)
|
|
.to(torch_device)
|
|
.eval()
|
|
)
|
|
|
|
def get_rag_config(self):
|
|
question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
|
generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
|
|
return RagConfig.from_question_encoder_generator_configs(
|
|
question_encoder_config,
|
|
generator_config,
|
|
bos_token_id=0,
|
|
decoder_start_token_id=2,
|
|
eos_token_id=2,
|
|
is_encoder_decoder=True,
|
|
pad_token_id=1,
|
|
vocab_size=50264,
|
|
title_sep=" / ",
|
|
doc_sep=" // ",
|
|
n_docs=5,
|
|
max_combined_length=300,
|
|
dataset="wiki_dpr",
|
|
dataset_split="train",
|
|
index_name="exact",
|
|
index_path=None,
|
|
use_dummy_dataset=True,
|
|
retrieval_vector_size=768,
|
|
retrieval_batch_size=8,
|
|
)
|
|
|
|
@slow
|
|
def test_rag_sequence_inference(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
rag_sequence = self.sequence_model
|
|
rag_sequence.set_retriever(rag_retriever)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_sequence(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
expected_shape = torch.Size([5, 5, 50264])
|
|
self.assertEqual(output.logits.shape, expected_shape)
|
|
|
|
expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
|
|
_assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)
|
|
|
|
expected_loss = torch.tensor([36.7368]).to(torch_device)
|
|
_assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)
|
|
|
|
@slow
|
|
def test_rag_token_inference(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
rag_token = self.token_model
|
|
rag_token.set_retriever(rag_retriever)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_token(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
expected_shape = torch.Size([5, 5, 50264])
|
|
self.assertEqual(output.logits.shape, expected_shape)
|
|
|
|
expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
|
|
_assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)
|
|
|
|
expected_loss = torch.tensor([36.3557]).to(torch_device)
|
|
_assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)
|
|
|
|
@slow
|
|
def test_rag_token_generate_beam(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
rag_token = self.token_model
|
|
rag_token.set_retriever(rag_retriever)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
|
|
output_ids = rag_token.generate(
|
|
input_ids,
|
|
decoder_start_token_id=rag_token.generator.config.decoder_start_token_id,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
)
|
|
# sequence generate test
|
|
output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)
|
|
|
|
# Expected outputs as given by model at integration time.
|
|
EXPECTED_OUTPUT_TEXT_1 = "\"She's My Kind of Girl"
|
|
EXPECTED_OUTPUT_TEXT_2 = "\"She's My Kind of Love"
|
|
|
|
self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
|
|
self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)
|
|
|
|
@slow
|
|
def test_rag_sequence_generate_beam(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
rag_sequence = self.sequence_model
|
|
rag_sequence.set_retriever(rag_retriever)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
|
|
output_ids = rag_sequence.generate(
|
|
input_ids,
|
|
decoder_start_token_id=rag_sequence.generator.config.decoder_start_token_id,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
)
|
|
# sequence generate test
|
|
output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)
|
|
|
|
# Expected outputs as given by model at integration time.
|
|
EXPECTED_OUTPUT_TEXT_1 = """\"She's My Kind of Girl\" was released through Epic Records in Japan in March 1972, giving the duo a Top 10 hit. Two more singles were released in Japan, \"En Carousel\" and \"Love Has Its Ways\" Ulvaeus and Andersson persevered with their songwriting and experimented with new sounds and vocal arrangements."""
|
|
EXPECTED_OUTPUT_TEXT_2 = """In September 2018, Björn Ulvaeus revealed that the two new songs, \"I Still Have Faith In You\" and \"Don't Shut Me Down\", would be released no earlier than March 2019. The two new tracks will feature in a TV special set to air later in the year."""
|
|
|
|
self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
|
|
self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)
|
|
|
|
@property
|
|
def test_data_questions(self):
|
|
return [
|
|
"who got the first nobel prize in physics",
|
|
"when is the next deadpool movie being released",
|
|
"which mode is used for short wave broadcast service",
|
|
"who is the owner of reading football club",
|
|
"when is the next scandal episode coming out",
|
|
"when is the last time the philadelphia won the superbowl",
|
|
"what is the most current adobe flash player version",
|
|
"how many episodes are there in dragon ball z",
|
|
]
|
|
|
|
@slow
|
|
def test_rag_sequence_generate_batch(self):
|
|
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
|
retriever = RagRetriever.from_pretrained(
|
|
"facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
|
|
)
|
|
rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
|
|
torch_device
|
|
)
|
|
|
|
input_dict = tokenizer(
|
|
self.test_data_questions,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
)
|
|
|
|
input_ids = input_dict.input_ids.to(torch_device)
|
|
attention_mask = input_dict.attention_mask.to(torch_device)
|
|
|
|
output_ids = rag_sequence.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
)
|
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
|
|
EXPECTED_OUTPUTS = [
|
|
" albert einstein",
|
|
" june 22, 2018",
|
|
" amplitude modulation",
|
|
" tim besley ( chairman )",
|
|
" june 20, 2018",
|
|
" 1980",
|
|
" 7.0",
|
|
" 8",
|
|
]
|
|
self.assertListEqual(outputs, EXPECTED_OUTPUTS)
|
|
|
|
@slow
|
|
def test_rag_sequence_generate_batch_from_context_input_ids(self):
|
|
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
|
retriever = RagRetriever.from_pretrained(
|
|
"facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
|
|
)
|
|
rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
|
|
torch_device
|
|
)
|
|
|
|
input_dict = tokenizer(
|
|
self.test_data_questions,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
)
|
|
|
|
input_ids = input_dict.input_ids.to(torch_device)
|
|
attention_mask = input_dict.attention_mask.to(torch_device)
|
|
|
|
question_hidden_states = rag_sequence.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
|
docs_dict = retriever(
|
|
input_ids.cpu().detach().numpy(), question_hidden_states.cpu().detach().numpy(), return_tensors="pt"
|
|
)
|
|
doc_scores = torch.bmm(
|
|
question_hidden_states.unsqueeze(1),
|
|
docs_dict["retrieved_doc_embeds"].to(torch_device).float().transpose(1, 2),
|
|
).squeeze(1)
|
|
|
|
output_ids = rag_sequence.generate(
|
|
context_input_ids=docs_dict["context_input_ids"].to(torch_device),
|
|
context_attention_mask=docs_dict["context_attention_mask"].to(torch_device),
|
|
doc_scores=doc_scores.to(torch_device),
|
|
do_deduplication=True,
|
|
)
|
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
|
|
EXPECTED_OUTPUTS = [
|
|
" albert einstein",
|
|
" june 22, 2018",
|
|
" amplitude modulation",
|
|
" tim besley ( chairman )",
|
|
" june 20, 2018",
|
|
" 1980",
|
|
" 7.0",
|
|
" 8",
|
|
]
|
|
self.assertListEqual(outputs, EXPECTED_OUTPUTS)
|
|
|
|
@slow
|
|
def test_rag_token_generate_batch(self):
|
|
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
|
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
|
|
rag_token = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever).to(
|
|
torch_device
|
|
)
|
|
|
|
input_dict = tokenizer(
|
|
self.test_data_questions,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
)
|
|
|
|
input_ids = input_dict.input_ids.to(torch_device)
|
|
attention_mask = input_dict.attention_mask.to(torch_device)
|
|
|
|
output_ids = rag_token.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
)
|
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
|
|
EXPECTED_OUTPUTS = [
|
|
" albert einstein",
|
|
" september 22, 2017",
|
|
" amplitude modulation",
|
|
" stefan persson",
|
|
" april 20, 2018",
|
|
" the 1970s",
|
|
" 7.1. 2",
|
|
" 13",
|
|
]
|
|
self.assertListEqual(outputs, EXPECTED_OUTPUTS)
|
|
|
|
|
|
@require_torch
|
|
@require_retrieval
|
|
class RagModelSaveLoadTests(unittest.TestCase):
|
|
def get_rag_config(self):
|
|
question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
|
generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
|
|
return RagConfig.from_question_encoder_generator_configs(
|
|
question_encoder_config,
|
|
generator_config,
|
|
bos_token_id=0,
|
|
decoder_start_token_id=2,
|
|
eos_token_id=2,
|
|
is_encoder_decoder=True,
|
|
pad_token_id=1,
|
|
vocab_size=50264,
|
|
title_sep=" / ",
|
|
doc_sep=" // ",
|
|
n_docs=5,
|
|
max_combined_length=300,
|
|
dataset="wiki_dpr",
|
|
dataset_split="train",
|
|
index_name="exact",
|
|
index_path=None,
|
|
use_dummy_dataset=True,
|
|
retrieval_vector_size=768,
|
|
retrieval_batch_size=8,
|
|
)
|
|
|
|
@slow
|
|
def test_rag_sequence_from_pretrained(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
rag_sequence = RagSequenceForGeneration.from_pretrained_question_encoder_generator(
|
|
"facebook/dpr-question_encoder-single-nq-base",
|
|
"facebook/bart-large-cnn",
|
|
retriever=rag_retriever,
|
|
config=rag_config,
|
|
).to(torch_device)
|
|
# check that the from pretrained methods work
|
|
rag_sequence.save_pretrained(tmp_dirname)
|
|
rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever)
|
|
rag_sequence.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_sequence(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
loss_pretrained = output.loss
|
|
del rag_sequence
|
|
|
|
question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
|
generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
|
rag_sequence = RagSequenceForGeneration(
|
|
config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
|
|
)
|
|
rag_sequence.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_sequence(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
loss_init = output.loss
|
|
|
|
self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)
|
|
|
|
@slow
|
|
def test_rag_token_from_pretrained(self):
|
|
rag_config = self.get_rag_config()
|
|
rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
|
|
"facebook/dpr-question_encoder-single-nq-base"
|
|
)
|
|
rag_retriever = RagRetriever(
|
|
rag_config,
|
|
question_encoder_tokenizer=rag_question_encoder_tokenizer,
|
|
generator_tokenizer=rag_decoder_tokenizer,
|
|
)
|
|
|
|
input_ids = rag_question_encoder_tokenizer(
|
|
"who sings does he love me with reba", return_tensors="pt"
|
|
).input_ids
|
|
decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids
|
|
|
|
input_ids = input_ids.to(torch_device)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
rag_token = RagTokenForGeneration.from_pretrained_question_encoder_generator(
|
|
"facebook/dpr-question_encoder-single-nq-base",
|
|
"facebook/bart-large-cnn",
|
|
retriever=rag_retriever,
|
|
config=rag_config,
|
|
).to(torch_device)
|
|
# check that the from pretrained methods work
|
|
rag_token.save_pretrained(tmp_dirname)
|
|
rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever)
|
|
rag_token.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_token(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
loss_pretrained = output.loss
|
|
del rag_token
|
|
|
|
question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
|
generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
|
rag_token = RagTokenForGeneration(
|
|
config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
|
|
)
|
|
rag_token.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = rag_token(
|
|
input_ids,
|
|
labels=decoder_input_ids,
|
|
)
|
|
|
|
loss_init = output.loss
|
|
|
|
self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)
|