145 строки
5.8 KiB
Python
145 строки
5.8 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
|
|
from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer
|
|
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
|
|
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
|
|
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio
|
|
|
|
from .test_feature_extraction_speech_to_text import floats_list
|
|
|
|
|
|
SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
@require_sentencepiece
|
|
class Speech2TextProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
save_dir = Path(self.tmpdirname)
|
|
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
|
|
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
|
|
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
|
|
|
|
tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
feature_extractor_map = {
|
|
"feature_size": 24,
|
|
"num_mel_bins": 24,
|
|
"padding_value": 0.0,
|
|
"sampling_rate": 16000,
|
|
"return_attention_mask": False,
|
|
"do_normalize": True,
|
|
}
|
|
save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = Speech2TextProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = Speech2TextProcessor(
|
|
tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = Speech2TextProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
|
|
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
|
|
input_processor = processor(raw_speech, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
with processor.as_target_processor():
|
|
encoded_processor = processor(input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|