212 строки
6.1 KiB
Python
212 строки
6.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import BertGenerationTokenizer
|
|
from transformers.file_utils import cached_property
|
|
from transformers.testing_utils import require_sentencepiece, require_torch, slow
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SPIECE_UNDERLINE = "▁"
|
|
|
|
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
|
|
|
|
|
|
@require_sentencepiece
|
|
class BertGenerationTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
|
|
tokenizer_class = BertGenerationTokenizer
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[285, 46, 10, 170, 382],
|
|
)
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"9",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"é",
|
|
".",
|
|
],
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(
|
|
ids,
|
|
[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"<unk>",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"<unk>",
|
|
".",
|
|
],
|
|
)
|
|
|
|
@cached_property
|
|
def big_tokenizer(self):
|
|
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
|
|
|
|
@slow
|
|
def test_tokenization_base_easy_symbols(self):
|
|
symbols = "Hello World!"
|
|
original_tokenizer_encodings = [18536, 2260, 101]
|
|
|
|
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
|
|
|
|
@slow
|
|
def test_tokenization_base_hard_symbols(self):
|
|
symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
|
|
original_tokenizer_encodings = [
|
|
871,
|
|
419,
|
|
358,
|
|
946,
|
|
991,
|
|
2521,
|
|
452,
|
|
358,
|
|
1357,
|
|
387,
|
|
7751,
|
|
3536,
|
|
112,
|
|
985,
|
|
456,
|
|
126,
|
|
865,
|
|
938,
|
|
5400,
|
|
5734,
|
|
458,
|
|
1368,
|
|
467,
|
|
786,
|
|
2462,
|
|
5246,
|
|
1159,
|
|
633,
|
|
865,
|
|
4519,
|
|
457,
|
|
582,
|
|
852,
|
|
2557,
|
|
427,
|
|
916,
|
|
508,
|
|
405,
|
|
34324,
|
|
497,
|
|
391,
|
|
408,
|
|
11342,
|
|
1244,
|
|
385,
|
|
100,
|
|
938,
|
|
985,
|
|
456,
|
|
574,
|
|
362,
|
|
12597,
|
|
3200,
|
|
3129,
|
|
1172,
|
|
]
|
|
|
|
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_torch_encode_plus_sent_to_model(self):
|
|
import torch
|
|
|
|
from transformers import BertGenerationConfig, BertGenerationEncoder
|
|
|
|
# Build sequence
|
|
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
|
|
sequence = " ".join(first_ten_tokens)
|
|
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt", return_token_type_ids=False)
|
|
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus(
|
|
[sequence + " " + sequence], return_tensors="pt", return_token_type_ids=False
|
|
)
|
|
|
|
config = BertGenerationConfig()
|
|
model = BertGenerationEncoder(config)
|
|
|
|
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
|
|
|
|
with torch.no_grad():
|
|
model(**encoded_sequence)
|
|
model(**batch_encoded_sequence)
|