huggingface-transformers/tests/test_tokenization_bert_gene...

212 строки
6.1 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import BertGenerationTokenizer
from transformers.file_utils import cached_property
from transformers.testing_utils import require_sentencepiece, require_torch, slow
from .test_tokenization_common import TokenizerTesterMixin
SPIECE_UNDERLINE = ""
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
@require_sentencepiece
class BertGenerationTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BertGenerationTokenizer
def setUp(self):
super().setUp()
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)
def test_full_tokenizer(self):
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[285, 46, 10, 170, 382],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
@cached_property
def big_tokenizer(self):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
@slow
def test_tokenization_base_easy_symbols(self):
symbols = "Hello World!"
original_tokenizer_encodings = [18536, 2260, 101]
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
@slow
def test_tokenization_base_hard_symbols(self):
symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
original_tokenizer_encodings = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
34324,
497,
391,
408,
11342,
1244,
385,
100,
938,
985,
456,
574,
362,
12597,
3200,
3129,
1172,
]
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
@require_torch
@slow
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
sequence = " ".join(first_ten_tokens)
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt", return_token_type_ids=False)
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence], return_tensors="pt", return_token_type_ids=False
)
config = BertGenerationConfig()
model = BertGenerationEncoder(config)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**encoded_sequence)
model(**batch_encoded_sequence)