44 строки
1.7 KiB
Python
44 строки
1.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
|
|
from transformers.testing_utils import require_tokenizers, slow
|
|
|
|
from .test_tokenization_bert import BertTokenizationTest
|
|
|
|
|
|
@require_tokenizers
|
|
class DistilBertTokenizationTest(BertTokenizationTest):
|
|
|
|
tokenizer_class = DistilBertTokenizer
|
|
rust_tokenizer_class = DistilBertTokenizerFast
|
|
test_rust_tokenizer = True
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
|
|
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
|
|
tokenizer.sep_token_id
|
|
]
|