huggingface-transformers/utils/download_glue_data.py

155 строки
8.0 KiB
Python

""" Script for downloading all GLUE data.
Original source: https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e
Note: for legal reasons, we are unable to host MRPC.
You can either use the version hosted by the SentEval team, which is already tokenized,
or you can download the original data from (https://download.microsoft.com/download/D/4/6/D46FF87A-F6B9-4252-AA8B-3604ED519838/MSRParaphraseCorpus.msi) and extract the data from it manually.
For Windows users, you can run the .msi file. For Mac and Linux users, consider an external library such as 'cabextract' (see below for an example).
You should then rename and place specific files in a folder (see below for an example).
mkdir MRPC
cabextract MSRParaphraseCorpus.msi -d MRPC
cat MRPC/_2DEC3DBE877E4DB192D17C0256E90F1D | tr -d $'\r' > MRPC/msr_paraphrase_train.txt
cat MRPC/_D7B391F9EAFF4B1B8BCE8F21B20B1B61 | tr -d $'\r' > MRPC/msr_paraphrase_test.txt
rm MRPC/_*
rm MSRParaphraseCorpus.msi
1/30/19: It looks like SentEval is no longer hosting their extracted and tokenized MRPC data, so you'll need to download the data from the original source for now.
2/11/19: It looks like SentEval actually *is* hosting the extracted data. Hooray!
"""
import argparse
import os
import sys
import urllib.request
import zipfile
TASKS = ["CoLA", "SST", "MRPC", "QQP", "STS", "MNLI", "SNLI", "QNLI", "RTE", "WNLI", "diagnostic"]
TASK2PATH = {
"CoLA": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FCoLA.zip?alt=media&token=46d5e637-3411-4188-bc44-5809b5bfb5f4",
"SST": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8",
"MRPC": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2Fmrpc_dev_ids.tsv?alt=media&token=ec5c0836-31d5-48f4-b431-7480817f1adc",
"QQP": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQQP.zip?alt=media&token=700c6acf-160d-4d89-81d1-de4191d02cb5",
"STS": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSTS-B.zip?alt=media&token=bddb94a7-8706-4e0d-a694-1109e12273b5",
"MNLI": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce",
"SNLI": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSNLI.zip?alt=media&token=4afcfbb2-ff0c-4b2d-a09a-dbf07926f4df",
"QNLI": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQNLIv2.zip?alt=media&token=6fdcf570-0fc5-4631-8456-9505272d1601",
"RTE": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FRTE.zip?alt=media&token=5efa7e85-a0bb-4f19-8ea2-9e1840f077fb",
"WNLI": "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FWNLI.zip?alt=media&token=068ad0a0-ded7-4bd7-99a5-5e00222e0faf",
"diagnostic": "https://storage.googleapis.com/mtl-sentence-representations.appspot.com/tsvsWithoutLabels%2FAX.tsv?GoogleAccessId=firebase-adminsdk-0khhl@mtl-sentence-representations.iam.gserviceaccount.com&Expires=2498860800&Signature=DuQ2CSPt2Yfre0C%2BiISrVYrIFaZH1Lc7hBVZDD4ZyR7fZYOMNOUGpi8QxBmTNOrNPjR3z1cggo7WXFfrgECP6FBJSsURv8Ybrue8Ypt%2FTPxbuJ0Xc2FhDi%2BarnecCBFO77RSbfuz%2Bs95hRrYhTnByqu3U%2FYZPaj3tZt5QdfpH2IUROY8LiBXoXS46LE%2FgOQc%2FKN%2BA9SoscRDYsnxHfG0IjXGwHN%2Bf88q6hOmAxeNPx6moDulUF6XMUAaXCSFU%2BnRO2RDL9CapWxj%2BDl7syNyHhB7987hZ80B%2FwFkQ3MEs8auvt5XW1%2Bd4aCU7ytgM69r8JDCwibfhZxpaa4gd50QXQ%3D%3D",
}
MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
def download_and_extract(task, data_dir):
print(f"Downloading and extracting {task}...")
data_file = f"{task}.zip"
urllib.request.urlretrieve(TASK2PATH[task], data_file)
with zipfile.ZipFile(data_file) as zip_ref:
zip_ref.extractall(data_dir)
os.remove(data_file)
print("\tCompleted!")
def format_mrpc(data_dir, path_to_data):
print("Processing MRPC...")
mrpc_dir = os.path.join(data_dir, "MRPC")
if not os.path.isdir(mrpc_dir):
os.mkdir(mrpc_dir)
if path_to_data:
mrpc_train_file = os.path.join(path_to_data, "msr_paraphrase_train.txt")
mrpc_test_file = os.path.join(path_to_data, "msr_paraphrase_test.txt")
else:
print("Local MRPC data not specified, downloading data from %s" % MRPC_TRAIN)
mrpc_train_file = os.path.join(mrpc_dir, "msr_paraphrase_train.txt")
mrpc_test_file = os.path.join(mrpc_dir, "msr_paraphrase_test.txt")
urllib.request.urlretrieve(MRPC_TRAIN, mrpc_train_file)
urllib.request.urlretrieve(MRPC_TEST, mrpc_test_file)
assert os.path.isfile(mrpc_train_file), "Train data not found at %s" % mrpc_train_file
assert os.path.isfile(mrpc_test_file), "Test data not found at %s" % mrpc_test_file
urllib.request.urlretrieve(TASK2PATH["MRPC"], os.path.join(mrpc_dir, "dev_ids.tsv"))
dev_ids = []
with open(os.path.join(mrpc_dir, "dev_ids.tsv"), encoding="utf8") as ids_fh:
for row in ids_fh:
dev_ids.append(row.strip().split("\t"))
with open(mrpc_train_file, encoding="utf8") as data_fh, open(
os.path.join(mrpc_dir, "train.tsv"), "w", encoding="utf8"
) as train_fh, open(os.path.join(mrpc_dir, "dev.tsv"), "w", encoding="utf8") as dev_fh:
header = data_fh.readline()
train_fh.write(header)
dev_fh.write(header)
for row in data_fh:
label, id1, id2, s1, s2 = row.strip().split("\t")
if [id1, id2] in dev_ids:
dev_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2))
else:
train_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2))
with open(mrpc_test_file, encoding="utf8") as data_fh, open(
os.path.join(mrpc_dir, "test.tsv"), "w", encoding="utf8"
) as test_fh:
header = data_fh.readline()
test_fh.write("index\t#1 ID\t#2 ID\t#1 String\t#2 String\n")
for idx, row in enumerate(data_fh):
label, id1, id2, s1, s2 = row.strip().split("\t")
test_fh.write("%d\t%s\t%s\t%s\t%s\n" % (idx, id1, id2, s1, s2))
print("\tCompleted!")
def download_diagnostic(data_dir):
print("Downloading and extracting diagnostic...")
if not os.path.isdir(os.path.join(data_dir, "diagnostic")):
os.mkdir(os.path.join(data_dir, "diagnostic"))
data_file = os.path.join(data_dir, "diagnostic", "diagnostic.tsv")
urllib.request.urlretrieve(TASK2PATH["diagnostic"], data_file)
print("\tCompleted!")
return
def get_tasks(task_names):
task_names = task_names.split(",")
if "all" in task_names:
tasks = TASKS
else:
tasks = []
for task_name in task_names:
assert task_name in TASKS, "Task %s not found!" % task_name
tasks.append(task_name)
return tasks
def main(arguments):
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", help="directory to save data to", type=str, default="glue_data")
parser.add_argument(
"--tasks", help="tasks to download data for as a comma separated string", type=str, default="all"
)
parser.add_argument(
"--path_to_mrpc",
help="path to directory containing extracted MRPC data, msr_paraphrase_train.txt and msr_paraphrase_text.txt",
type=str,
default="",
)
args = parser.parse_args(arguments)
if not os.path.isdir(args.data_dir):
os.mkdir(args.data_dir)
tasks = get_tasks(args.tasks)
for task in tasks:
if task == "MRPC":
format_mrpc(args.data_dir, args.path_to_mrpc)
elif task == "diagnostic":
download_diagnostic(args.data_dir)
else:
download_and_extract(task, args.data_dir)
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))