370 строки
14 KiB
Python
370 строки
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import GPT2Config, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
from transformers.modeling_tf_gpt2 import (
|
|
TFGPT2Model,
|
|
TFGPT2LMHeadModel,
|
|
TFGPT2DoubleHeadsModel,
|
|
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
shape_list,
|
|
)
|
|
|
|
|
|
class TFGPT2ModelTester:
|
|
def __init__(
|
|
self, parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_token_type_ids = True
|
|
self.use_input_mask = True
|
|
self.use_labels = True
|
|
self.use_mc_token_ids = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 5
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
self.bos_token_id = self.vocab_size - 1
|
|
self.eos_token_id = self.vocab_size - 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
mc_token_ids = None
|
|
if self.use_mc_token_ids:
|
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = GPT2Config(
|
|
vocab_size=self.vocab_size,
|
|
n_embd=self.hidden_size,
|
|
n_layer=self.num_hidden_layers,
|
|
n_head=self.num_attention_heads,
|
|
# intermediate_size=self.intermediate_size,
|
|
# hidden_act=self.hidden_act,
|
|
# hidden_dropout_prob=self.hidden_dropout_prob,
|
|
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
n_positions=self.max_position_embeddings,
|
|
n_ctx=self.max_position_embeddings,
|
|
# type_vocab_size=self.type_vocab_size,
|
|
# initializer_range=self.initializer_range
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
return_dict=True,
|
|
)
|
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = TFGPT2Model(config=config)
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"token_type_ids": token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, None, input_mask] # None is the input for 'past'
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size],
|
|
)
|
|
|
|
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = TFGPT2Model(config=config)
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
|
|
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
|
|
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)
|
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
|
|
|
output, past = outputs.to_tuple()
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
|
|
|
|
# append to next input_ids and token_type_ids
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
|
|
|
|
def create_and_check_gpt2_model_attention_mask_past(
|
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
|
):
|
|
model = TFGPT2Model(config=config)
|
|
|
|
# create attention mask
|
|
half_seq_length = self.seq_length // 2
|
|
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
|
|
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
|
|
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
|
|
|
|
# first forward pass
|
|
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
|
|
# change a random masked slice from input_ids
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
|
|
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
|
|
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
|
|
condition = tf.transpose(
|
|
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
|
|
)
|
|
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
|
|
|
|
# append to next input_ids and attn_mask
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
|
|
|
|
# get two different outputs
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
|
|
|
|
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = TFGPT2LMHeadModel(config=config)
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"token_type_ids": token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertListEqual(
|
|
list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size],
|
|
)
|
|
|
|
def create_and_check_gpt2_double_head(
|
|
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
|
|
):
|
|
model = TFGPT2DoubleHeadsModel(config=config)
|
|
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
|
|
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"mc_token_ids": mc_token_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertListEqual(
|
|
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
|
|
)
|
|
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"token_type_ids": token_type_ids,
|
|
"attention_mask": input_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
|
|
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFGPT2ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_gpt2_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
|
|
|
|
def test_gpt2_model_past(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)
|
|
|
|
def test_gpt2_model_att_mask_past(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)
|
|
|
|
def test_gpt2_lm_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)
|
|
|
|
def test_gpt2_double_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFGPT2Model.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_gpt2(self):
|
|
model = TFGPT2LMHeadModel.from_pretrained("gpt2")
|
|
input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog
|
|
expected_output_ids = [
|
|
464,
|
|
3290,
|
|
373,
|
|
1043,
|
|
287,
|
|
257,
|
|
2214,
|
|
1474,
|
|
262,
|
|
16246,
|
|
286,
|
|
2688,
|
|
290,
|
|
2688,
|
|
27262,
|
|
13,
|
|
198,
|
|
198,
|
|
464,
|
|
3290,
|
|
] # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
|
|
output_ids = model.generate(input_ids, do_sample=False)
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|
|
|
|
@slow
|
|
def test_lm_generate_distilgpt2(self):
|
|
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
|
|
input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32) # The president
|
|
expected_output_ids = [
|
|
464,
|
|
1893,
|
|
286,
|
|
262,
|
|
1578,
|
|
1829,
|
|
11,
|
|
290,
|
|
262,
|
|
1893,
|
|
286,
|
|
262,
|
|
1578,
|
|
7526,
|
|
11,
|
|
423,
|
|
587,
|
|
287,
|
|
262,
|
|
2635,
|
|
] # The president of the United States, and the president of the United Kingdom, have been in the White
|
|
|
|
output_ids = model.generate(input_ids, do_sample=False)
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|