244 строки
8.7 KiB
Python
244 строки
8.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import OpenAIGPTConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
from transformers.modeling_tf_openai import (
|
|
TFOpenAIGPTModel,
|
|
TFOpenAIGPTLMHeadModel,
|
|
TFOpenAIGPTDoubleHeadsModel,
|
|
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
)
|
|
|
|
|
|
class TFOpenAIGPTModelTester:
|
|
def __init__(
|
|
self, parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_token_type_ids = True
|
|
self.use_input_mask = True
|
|
self.use_labels = True
|
|
self.use_mc_token_ids = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 5
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
mc_token_ids = None
|
|
if self.use_mc_token_ids:
|
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = OpenAIGPTConfig(
|
|
vocab_size=self.vocab_size,
|
|
n_embd=self.hidden_size,
|
|
n_layer=self.num_hidden_layers,
|
|
n_head=self.num_attention_heads,
|
|
# intermediate_size=self.intermediate_size,
|
|
# hidden_act=self.hidden_act,
|
|
# hidden_dropout_prob=self.hidden_dropout_prob,
|
|
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
n_positions=self.max_position_embeddings,
|
|
n_ctx=self.max_position_embeddings,
|
|
# type_vocab_size=self.type_vocab_size,
|
|
# initializer_range=self.initializer_range,
|
|
return_dict=True,
|
|
)
|
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = TFOpenAIGPTModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
|
|
)
|
|
|
|
def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = TFOpenAIGPTLMHeadModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
|
|
|
|
def create_and_check_openai_gpt_double_head(
|
|
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
|
|
):
|
|
model = TFOpenAIGPTDoubleHeadsModel(config=config)
|
|
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
|
|
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"mc_token_ids": mc_token_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertListEqual(
|
|
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size]
|
|
)
|
|
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel) if is_tf_available() else ()
|
|
)
|
|
all_generative_model_classes = (
|
|
(TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
|
|
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFOpenAIGPTModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_openai_gpt_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)
|
|
|
|
def test_openai_gpt_lm_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)
|
|
|
|
def test_openai_gpt_double_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFOpenAIGPTModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_openai_gpt(self):
|
|
model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
|
|
input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32) # the president is
|
|
expected_output_ids = [
|
|
481,
|
|
4735,
|
|
544,
|
|
246,
|
|
963,
|
|
870,
|
|
762,
|
|
239,
|
|
244,
|
|
40477,
|
|
244,
|
|
249,
|
|
719,
|
|
881,
|
|
487,
|
|
544,
|
|
240,
|
|
244,
|
|
603,
|
|
481,
|
|
] # the president is a very good man. " \n " i\'m sure he is, " said the
|
|
|
|
output_ids = model.generate(input_ids, do_sample=False)
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|