huggingface-transformers/tests/test_modeling_tf_xlnet.py

811 строки
24 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
from transformers import XLNetConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_xlnet import (
TFXLNetModel,
TFXLNetLMHeadModel,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForMultipleChoice,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class TFXLNetModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.mem_len = 10
# self.key_len = seq_length + mem_len
self.clamp_len = -1
self.reuse_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.num_attention_heads = 4
self.d_inner = 128
self.num_hidden_layers = 5
self.type_sequence_label_size = 2
self.untie_r = True
self.bi_data = False
self.same_length = False
self.initializer_range = 0.05
self.seed = 1
self.type_vocab_size = 2
self.bos_token_id = 1
self.eos_token_id = 2
self.pad_token_id = 5
self.num_choices = 4
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
# target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
lm_labels = None
is_impossible_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLNetConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data,
initializer_range=self.initializer_range,
num_labels=self.type_sequence_label_size,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
return_dict=True,
)
return (
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
)
def set_seed(self):
random.seed(self.seed)
tf.random.set_seed(self.seed)
def create_and_check_xlnet_base_model(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetModel(config)
inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
result = model(inputs)
inputs = [input_ids_1, input_mask]
result = model(inputs)
config.mem_len = 0
model = TFXLNetModel(config)
no_mems_outputs = model(inputs)
self.parent.assertEqual(len(no_mems_outputs), 1)
self.parent.assertListEqual(
list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_lm_head(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetLMHeadModel(config)
inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
all_logits_1, mems_1 = model(inputs_1).to_tuple()
inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
all_logits_2, mems_2 = model(inputs_2).to_tuple()
inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
logits, _ = model(inputs_3).to_tuple()
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"all_logits_1": all_logits_1.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
"all_logits_2": all_logits_2.numpy(),
}
self.parent.assertListEqual(
list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_qa(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForQuestionAnsweringSimple(config)
inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
result = model(inputs)
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_sequence_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForSequenceClassification(config)
result = model(input_ids_1)
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_for_token_classification(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
config.num_labels = input_ids_1.shape[1]
model = TFXLNetForTokenClassification(config)
inputs = {
"input_ids": input_ids_1,
"attention_mask": input_mask,
# 'token_type_ids': token_type_ids
}
result = model(inputs)
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_for_multiple_choice(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
config.num_choices = self.num_choices
model = TFXLNetForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids_1, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(segment_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size * self.num_choices, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_tf
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFXLNetModel,
TFXLNetLMHeadModel,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForMultipleChoice,
)
if is_tf_available()
else ()
)
all_generative_model_classes = (
(TFXLNetLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
test_pruning = False
def setUp(self):
self.model_tester = TFXLNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_xlnet_base_model(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)
def test_xlnet_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
def test_xlnet_sequence_classif(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)
def test_xlnet_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)
def test_xlnet_qa(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
def test_xlnet_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFXLNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_tf
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_xlnet_base_cased(self):
model = TFXLNetLMHeadModel.from_pretrained("xlnet-base-cased")
input_ids = tf.convert_to_tensor(
[
[
67,
2840,
19,
18,
1484,
20,
965,
29077,
8719,
1273,
21,
45,
273,
17,
10,
15048,
28,
27511,
21,
4185,
11,
41,
2444,
9,
32,
1025,
20,
8719,
26,
23,
673,
966,
19,
29077,
20643,
27511,
20822,
20643,
19,
17,
6616,
17511,
18,
8978,
20,
18,
777,
9,
19233,
1527,
17669,
19,
24,
673,
17,
28756,
150,
12943,
4354,
153,
27,
442,
37,
45,
668,
21,
24,
256,
20,
416,
22,
2771,
4901,
9,
12943,
4354,
153,
51,
24,
3004,
21,
28142,
23,
65,
20,
18,
416,
34,
24,
2958,
22947,
9,
1177,
45,
668,
3097,
13768,
23,
103,
28,
441,
148,
48,
20522,
19,
12943,
4354,
153,
12860,
34,
18,
326,
27,
17492,
684,
21,
6709,
9,
8585,
123,
266,
19,
12943,
4354,
153,
6872,
24,
3004,
20,
18,
9225,
2198,
19,
12717,
103,
22,
401,
24,
6348,
9,
12943,
4354,
153,
1068,
2768,
2286,
19,
33,
104,
19,
176,
24,
9313,
19,
20086,
28,
45,
10292,
9,
4,
3,
]
],
dtype=tf.int32,
)
# In 1991, the remains of Russian Tsar Nicholas II and his family
# (except for Alexei and Maria) are discovered.
# The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
# remainder of the story. 1883 Western Siberia,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic.
# Rasputin has a vision and denounces one of the men as a horse thief. Although his
# father initially slaps him for making such an accusation, Rasputin watches as the
# man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
# the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
# with people, even a bishop, begging for his blessing. """
expected_output_ids = [
67,
2840,
19,
18,
1484,
20,
965,
29077,
8719,
1273,
21,
45,
273,
17,
10,
15048,
28,
27511,
21,
4185,
11,
41,
2444,
9,
32,
1025,
20,
8719,
26,
23,
673,
966,
19,
29077,
20643,
27511,
20822,
20643,
19,
17,
6616,
17511,
18,
8978,
20,
18,
777,
9,
19233,
1527,
17669,
19,
24,
673,
17,
28756,
150,
12943,
4354,
153,
27,
442,
37,
45,
668,
21,
24,
256,
20,
416,
22,
2771,
4901,
9,
12943,
4354,
153,
51,
24,
3004,
21,
28142,
23,
65,
20,
18,
416,
34,
24,
2958,
22947,
9,
1177,
45,
668,
3097,
13768,
23,
103,
28,
441,
148,
48,
20522,
19,
12943,
4354,
153,
12860,
34,
18,
326,
27,
17492,
684,
21,
6709,
9,
8585,
123,
266,
19,
12943,
4354,
153,
6872,
24,
3004,
20,
18,
9225,
2198,
19,
12717,
103,
22,
401,
24,
6348,
9,
12943,
4354,
153,
1068,
2768,
2286,
19,
33,
104,
19,
176,
24,
9313,
19,
20086,
28,
45,
10292,
9,
4,
3,
19,
12943,
4354,
153,
27,
442,
22,
2771,
4901,
9,
69,
27,
50,
551,
22,
2771,
4901,
19,
21,
45,
668,
21,
18,
416,
41,
1499,
22,
755,
18,
14285,
9,
12943,
4354,
153,
27,
1499,
22,
642,
22,
]
# In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
# are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
# narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
# is asked by his father and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially slaps
# him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
# Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
# <sep><cls>, Rasputin is asked to perform magic.
# He is not able to perform magic, and his father and
# the men are forced to leave the monastery. Rasputin is forced to return to
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)