811 строки
24 KiB
Python
811 строки
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import random
|
|
import unittest
|
|
|
|
from transformers import XLNetConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.modeling_tf_xlnet import (
|
|
TFXLNetModel,
|
|
TFXLNetLMHeadModel,
|
|
TFXLNetForSequenceClassification,
|
|
TFXLNetForTokenClassification,
|
|
TFXLNetForQuestionAnsweringSimple,
|
|
TFXLNetForMultipleChoice,
|
|
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
)
|
|
|
|
|
|
class TFXLNetModelTester:
|
|
def __init__(
|
|
self, parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.mem_len = 10
|
|
# self.key_len = seq_length + mem_len
|
|
self.clamp_len = -1
|
|
self.reuse_len = 15
|
|
self.is_training = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.cutoffs = [10, 50, 80]
|
|
self.hidden_size = 32
|
|
self.num_attention_heads = 4
|
|
self.d_inner = 128
|
|
self.num_hidden_layers = 5
|
|
self.type_sequence_label_size = 2
|
|
self.untie_r = True
|
|
self.bi_data = False
|
|
self.same_length = False
|
|
self.initializer_range = 0.05
|
|
self.seed = 1
|
|
self.type_vocab_size = 2
|
|
self.bos_token_id = 1
|
|
self.eos_token_id = 2
|
|
self.pad_token_id = 5
|
|
self.num_choices = 4
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
|
|
|
|
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
|
|
perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
|
|
perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
|
|
perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
|
|
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
|
target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
|
|
target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
|
|
target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
|
|
# target_mapping[:, 0, -1] = 1.0 # predict last token
|
|
|
|
sequence_labels = None
|
|
lm_labels = None
|
|
is_impossible_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
|
|
|
|
config = XLNetConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
n_head=self.num_attention_heads,
|
|
d_inner=self.d_inner,
|
|
n_layer=self.num_hidden_layers,
|
|
untie_r=self.untie_r,
|
|
mem_len=self.mem_len,
|
|
clamp_len=self.clamp_len,
|
|
same_length=self.same_length,
|
|
reuse_len=self.reuse_len,
|
|
bi_data=self.bi_data,
|
|
initializer_range=self.initializer_range,
|
|
num_labels=self.type_sequence_label_size,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
return_dict=True,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
)
|
|
|
|
def set_seed(self):
|
|
random.seed(self.seed)
|
|
tf.random.set_seed(self.seed)
|
|
|
|
def create_and_check_xlnet_base_model(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetModel(config)
|
|
|
|
inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids_1, input_mask]
|
|
result = model(inputs)
|
|
|
|
config.mem_len = 0
|
|
model = TFXLNetModel(config)
|
|
no_mems_outputs = model(inputs)
|
|
self.parent.assertEqual(len(no_mems_outputs), 1)
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
|
|
)
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems"]),
|
|
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_lm_head(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetLMHeadModel(config)
|
|
|
|
inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
|
|
all_logits_1, mems_1 = model(inputs_1).to_tuple()
|
|
|
|
inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
|
|
all_logits_2, mems_2 = model(inputs_2).to_tuple()
|
|
|
|
inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
|
|
logits, _ = model(inputs_3).to_tuple()
|
|
|
|
result = {
|
|
"mems_1": [mem.numpy() for mem in mems_1],
|
|
"all_logits_1": all_logits_1.numpy(),
|
|
"mems_2": [mem.numpy() for mem in mems_2],
|
|
"all_logits_2": all_logits_2.numpy(),
|
|
}
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
|
|
)
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems_1"]),
|
|
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
|
|
)
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems_2"]),
|
|
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_qa(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetForQuestionAnsweringSimple(config)
|
|
|
|
inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
|
|
result = model(inputs)
|
|
|
|
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems"]),
|
|
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_sequence_classif(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetForSequenceClassification(config)
|
|
|
|
result = model(input_ids_1)
|
|
|
|
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems"]),
|
|
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_for_token_classification(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
config.num_labels = input_ids_1.shape[1]
|
|
model = TFXLNetForTokenClassification(config)
|
|
inputs = {
|
|
"input_ids": input_ids_1,
|
|
"attention_mask": input_mask,
|
|
# 'token_type_ids': token_type_ids
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertListEqual(
|
|
list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
|
|
)
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems"]),
|
|
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_for_multiple_choice(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFXLNetForMultipleChoice(config=config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids_1, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(segment_ids, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
|
|
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
|
|
self.parent.assertListEqual(
|
|
list(list(mem.shape) for mem in result["mems"]),
|
|
[[self.seq_length, self.batch_size * self.num_choices, self.hidden_size]] * self.num_hidden_layers,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids_1}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(
|
|
TFXLNetModel,
|
|
TFXLNetLMHeadModel,
|
|
TFXLNetForSequenceClassification,
|
|
TFXLNetForTokenClassification,
|
|
TFXLNetForQuestionAnsweringSimple,
|
|
TFXLNetForMultipleChoice,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (
|
|
(TFXLNetLMHeadModel,) if is_tf_available() else ()
|
|
) # TODO (PVP): Check other models whether language generation is also applicable
|
|
test_pruning = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFXLNetModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_xlnet_base_model(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)
|
|
|
|
def test_xlnet_lm_head(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
|
|
|
|
def test_xlnet_sequence_classif(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)
|
|
|
|
def test_xlnet_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)
|
|
|
|
def test_xlnet_qa(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
|
|
|
|
def test_xlnet_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_for_multiple_choice(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFXLNetModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_xlnet_base_cased(self):
|
|
model = TFXLNetLMHeadModel.from_pretrained("xlnet-base-cased")
|
|
input_ids = tf.convert_to_tensor(
|
|
[
|
|
[
|
|
67,
|
|
2840,
|
|
19,
|
|
18,
|
|
1484,
|
|
20,
|
|
965,
|
|
29077,
|
|
8719,
|
|
1273,
|
|
21,
|
|
45,
|
|
273,
|
|
17,
|
|
10,
|
|
15048,
|
|
28,
|
|
27511,
|
|
21,
|
|
4185,
|
|
11,
|
|
41,
|
|
2444,
|
|
9,
|
|
32,
|
|
1025,
|
|
20,
|
|
8719,
|
|
26,
|
|
23,
|
|
673,
|
|
966,
|
|
19,
|
|
29077,
|
|
20643,
|
|
27511,
|
|
20822,
|
|
20643,
|
|
19,
|
|
17,
|
|
6616,
|
|
17511,
|
|
18,
|
|
8978,
|
|
20,
|
|
18,
|
|
777,
|
|
9,
|
|
19233,
|
|
1527,
|
|
17669,
|
|
19,
|
|
24,
|
|
673,
|
|
17,
|
|
28756,
|
|
150,
|
|
12943,
|
|
4354,
|
|
153,
|
|
27,
|
|
442,
|
|
37,
|
|
45,
|
|
668,
|
|
21,
|
|
24,
|
|
256,
|
|
20,
|
|
416,
|
|
22,
|
|
2771,
|
|
4901,
|
|
9,
|
|
12943,
|
|
4354,
|
|
153,
|
|
51,
|
|
24,
|
|
3004,
|
|
21,
|
|
28142,
|
|
23,
|
|
65,
|
|
20,
|
|
18,
|
|
416,
|
|
34,
|
|
24,
|
|
2958,
|
|
22947,
|
|
9,
|
|
1177,
|
|
45,
|
|
668,
|
|
3097,
|
|
13768,
|
|
23,
|
|
103,
|
|
28,
|
|
441,
|
|
148,
|
|
48,
|
|
20522,
|
|
19,
|
|
12943,
|
|
4354,
|
|
153,
|
|
12860,
|
|
34,
|
|
18,
|
|
326,
|
|
27,
|
|
17492,
|
|
684,
|
|
21,
|
|
6709,
|
|
9,
|
|
8585,
|
|
123,
|
|
266,
|
|
19,
|
|
12943,
|
|
4354,
|
|
153,
|
|
6872,
|
|
24,
|
|
3004,
|
|
20,
|
|
18,
|
|
9225,
|
|
2198,
|
|
19,
|
|
12717,
|
|
103,
|
|
22,
|
|
401,
|
|
24,
|
|
6348,
|
|
9,
|
|
12943,
|
|
4354,
|
|
153,
|
|
1068,
|
|
2768,
|
|
2286,
|
|
19,
|
|
33,
|
|
104,
|
|
19,
|
|
176,
|
|
24,
|
|
9313,
|
|
19,
|
|
20086,
|
|
28,
|
|
45,
|
|
10292,
|
|
9,
|
|
4,
|
|
3,
|
|
]
|
|
],
|
|
dtype=tf.int32,
|
|
)
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family
|
|
# (except for Alexei and Maria) are discovered.
|
|
# The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
|
|
# remainder of the story. 1883 Western Siberia,
|
|
# a young Grigori Rasputin is asked by his father and a group of men to perform magic.
|
|
# Rasputin has a vision and denounces one of the men as a horse thief. Although his
|
|
# father initially slaps him for making such an accusation, Rasputin watches as the
|
|
# man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
|
|
# the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
|
|
# with people, even a bishop, begging for his blessing. """
|
|
|
|
expected_output_ids = [
|
|
67,
|
|
2840,
|
|
19,
|
|
18,
|
|
1484,
|
|
20,
|
|
965,
|
|
29077,
|
|
8719,
|
|
1273,
|
|
21,
|
|
45,
|
|
273,
|
|
17,
|
|
10,
|
|
15048,
|
|
28,
|
|
27511,
|
|
21,
|
|
4185,
|
|
11,
|
|
41,
|
|
2444,
|
|
9,
|
|
32,
|
|
1025,
|
|
20,
|
|
8719,
|
|
26,
|
|
23,
|
|
673,
|
|
966,
|
|
19,
|
|
29077,
|
|
20643,
|
|
27511,
|
|
20822,
|
|
20643,
|
|
19,
|
|
17,
|
|
6616,
|
|
17511,
|
|
18,
|
|
8978,
|
|
20,
|
|
18,
|
|
777,
|
|
9,
|
|
19233,
|
|
1527,
|
|
17669,
|
|
19,
|
|
24,
|
|
673,
|
|
17,
|
|
28756,
|
|
150,
|
|
12943,
|
|
4354,
|
|
153,
|
|
27,
|
|
442,
|
|
37,
|
|
45,
|
|
668,
|
|
21,
|
|
24,
|
|
256,
|
|
20,
|
|
416,
|
|
22,
|
|
2771,
|
|
4901,
|
|
9,
|
|
12943,
|
|
4354,
|
|
153,
|
|
51,
|
|
24,
|
|
3004,
|
|
21,
|
|
28142,
|
|
23,
|
|
65,
|
|
20,
|
|
18,
|
|
416,
|
|
34,
|
|
24,
|
|
2958,
|
|
22947,
|
|
9,
|
|
1177,
|
|
45,
|
|
668,
|
|
3097,
|
|
13768,
|
|
23,
|
|
103,
|
|
28,
|
|
441,
|
|
148,
|
|
48,
|
|
20522,
|
|
19,
|
|
12943,
|
|
4354,
|
|
153,
|
|
12860,
|
|
34,
|
|
18,
|
|
326,
|
|
27,
|
|
17492,
|
|
684,
|
|
21,
|
|
6709,
|
|
9,
|
|
8585,
|
|
123,
|
|
266,
|
|
19,
|
|
12943,
|
|
4354,
|
|
153,
|
|
6872,
|
|
24,
|
|
3004,
|
|
20,
|
|
18,
|
|
9225,
|
|
2198,
|
|
19,
|
|
12717,
|
|
103,
|
|
22,
|
|
401,
|
|
24,
|
|
6348,
|
|
9,
|
|
12943,
|
|
4354,
|
|
153,
|
|
1068,
|
|
2768,
|
|
2286,
|
|
19,
|
|
33,
|
|
104,
|
|
19,
|
|
176,
|
|
24,
|
|
9313,
|
|
19,
|
|
20086,
|
|
28,
|
|
45,
|
|
10292,
|
|
9,
|
|
4,
|
|
3,
|
|
19,
|
|
12943,
|
|
4354,
|
|
153,
|
|
27,
|
|
442,
|
|
22,
|
|
2771,
|
|
4901,
|
|
9,
|
|
69,
|
|
27,
|
|
50,
|
|
551,
|
|
22,
|
|
2771,
|
|
4901,
|
|
19,
|
|
21,
|
|
45,
|
|
668,
|
|
21,
|
|
18,
|
|
416,
|
|
41,
|
|
1499,
|
|
22,
|
|
755,
|
|
18,
|
|
14285,
|
|
9,
|
|
12943,
|
|
4354,
|
|
153,
|
|
27,
|
|
1499,
|
|
22,
|
|
642,
|
|
22,
|
|
]
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
|
|
# are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
|
|
# narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
|
|
# is asked by his father and a group of men to perform magic. Rasputin has a vision and
|
|
# denounces one of the men as a horse thief. Although his father initially slaps
|
|
# him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
|
|
# Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
|
|
# Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
|
|
# <sep><cls>, Rasputin is asked to perform magic.
|
|
# He is not able to perform magic, and his father and
|
|
# the men are forced to leave the monastery. Rasputin is forced to return to
|
|
|
|
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
|
|
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|