425 строки
14 KiB
Python
425 строки
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from transformers import (
|
|
XLMConfig,
|
|
XLMModel,
|
|
XLMWithLMHeadModel,
|
|
XLMForTokenClassification,
|
|
XLMForQuestionAnswering,
|
|
XLMForSequenceClassification,
|
|
XLMForQuestionAnsweringSimple,
|
|
XLMForMultipleChoice,
|
|
)
|
|
from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
class XLMModelTester:
|
|
def __init__(
|
|
self, parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_lengths = True
|
|
self.use_token_type_ids = True
|
|
self.use_labels = True
|
|
self.gelu_activation = True
|
|
self.sinusoidal_embeddings = False
|
|
self.causal = False
|
|
self.asm = False
|
|
self.n_langs = 2
|
|
self.vocab_size = 99
|
|
self.n_special = 0
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 5
|
|
self.num_attention_heads = 4
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 2
|
|
self.num_choices = 4
|
|
self.summary_type = "last"
|
|
self.use_proj = True
|
|
self.scope = None
|
|
self.bos_token_id = 0
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
|
|
|
|
input_lengths = None
|
|
if self.use_input_lengths:
|
|
input_lengths = (
|
|
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
|
|
) # small variation of seq_length
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
is_impossible_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = XLMConfig(
|
|
vocab_size=self.vocab_size,
|
|
n_special=self.n_special,
|
|
emb_dim=self.hidden_size,
|
|
n_layers=self.num_hidden_layers,
|
|
n_heads=self.num_attention_heads,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
gelu_activation=self.gelu_activation,
|
|
sinusoidal_embeddings=self.sinusoidal_embeddings,
|
|
asm=self.asm,
|
|
causal=self.causal,
|
|
n_langs=self.n_langs,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
summary_type=self.summary_type,
|
|
use_proj=self.use_proj,
|
|
num_labels=self.num_labels,
|
|
bos_token_id=self.bos_token_id,
|
|
return_dict=True,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
)
|
|
|
|
def create_and_check_xlm_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
|
|
result = model(input_ids, langs=token_type_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_xlm_lm_head(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMWithLMHeadModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_xlm_simple_qa(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForQuestionAnsweringSimple(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
outputs = model(input_ids)
|
|
|
|
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
|
|
result = outputs
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_xlm_qa(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForQuestionAnswering(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
|
|
result_with_labels = model(
|
|
input_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels,
|
|
p_mask=input_mask,
|
|
)
|
|
|
|
result_with_labels = model(
|
|
input_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels,
|
|
)
|
|
|
|
(total_loss,) = result_with_labels.to_tuple()
|
|
|
|
result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
|
|
|
|
(total_loss,) = result_with_labels.to_tuple()
|
|
|
|
self.parent.assertEqual(result_with_labels.loss.shape, ())
|
|
self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
|
|
self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
|
|
self.parent.assertEqual(
|
|
result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
|
|
)
|
|
self.parent.assertEqual(
|
|
result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
|
|
)
|
|
self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
|
|
|
|
def create_and_check_xlm_sequence_classif(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
model = XLMForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
result = model(input_ids, labels=sequence_labels)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
def create_and_check_xlm_token_classif(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = XLMForTokenClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_xlm_for_multiple_choice(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = XLMForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
token_type_ids=multiple_choice_token_type_ids,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_lengths,
|
|
sequence_labels,
|
|
token_labels,
|
|
is_impossible_labels,
|
|
choice_labels,
|
|
input_mask,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class XLMModelTest(ModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(
|
|
XLMModel,
|
|
XLMWithLMHeadModel,
|
|
XLMForQuestionAnswering,
|
|
XLMForSequenceClassification,
|
|
XLMForQuestionAnsweringSimple,
|
|
XLMForTokenClassification,
|
|
XLMForMultipleChoice,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (
|
|
(XLMWithLMHeadModel,) if is_torch_available() else ()
|
|
) # TODO (PVP): Check other models whether language generation is also applicable
|
|
|
|
def setUp(self):
|
|
self.model_tester = XLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_xlm_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
|
|
|
|
def test_xlm_lm_head(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
|
|
|
|
def test_xlm_simple_qa(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)
|
|
|
|
def test_xlm_qa(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
|
|
|
|
def test_xlm_sequence_classif(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
|
|
|
|
def test_xlm_token_classif(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
|
|
|
|
def test_xlm_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = XLMModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class XLMModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_xlm_mlm_en_2048(self):
|
|
model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
|
|
model.to(torch_device)
|
|
input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device) # the president
|
|
expected_output_ids = [
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
14,
|
|
447,
|
|
] # the president the president the president the president the president the president the president the president the president the president
|
|
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
|
|
output_ids = model.generate(input_ids, do_sample=False)
|
|
self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)
|