huggingface-transformers/tests/test_onnx.py

176 строки
7.0 KiB
Python

import unittest
from os.path import dirname, exists
from pathlib import Path
from shutil import rmtree
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_torch, slow
class FuncContiguousArgs:
def forward(self, input_ids, token_type_ids, attention_mask):
return None
class FuncNonContiguousArgs:
def forward(self, input_ids, some_other_args, token_type_ids, attention_mask):
return None
class OnnxExportTestCase(unittest.TestCase):
MODEL_TO_TEST = ["bert-base-cased", "gpt2", "roberta-base"]
@require_tf
@slow
def test_export_tensorflow(self):
for model in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(model, "tf", 12)
@require_torch
@slow
def test_export_pytorch(self):
for model in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(model, "pt", 12)
@require_torch
@slow
def test_export_custom_bert_model(self):
from transformers import BertModel
vocab = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t") as vocab_file:
vocab_file.write("\n".join(vocab))
vocab_file.flush()
tokenizer = BertTokenizerFast(vocab_file.name)
with TemporaryDirectory() as bert_save_dir:
model = BertModel(BertConfig(vocab_size=len(vocab)))
model.save_pretrained(bert_save_dir)
self._test_export(bert_save_dir, "pt", 12, tokenizer)
@require_tf
@slow
def test_quantize_tf(self):
for model in OnnxExportTestCase.MODEL_TO_TEST:
path = self._test_export(model, "tf", 12)
quantized_path = quantize(Path(path))
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(path).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model")
@require_torch
@slow
def test_quantize_pytorch(self):
for model in OnnxExportTestCase.MODEL_TO_TEST:
path = self._test_export(model, "pt", 12)
quantized_path = quantize(Path(path))
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(path).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model")
def _test_export(self, model, framework, opset, tokenizer=None):
try:
# Compute path
with TemporaryDirectory() as tempdir:
path = tempdir + "/model.onnx"
# Remove folder if exists
if exists(dirname(path)):
rmtree(dirname(path))
# Export
convert(framework, model, path, opset, tokenizer)
return path
except Exception as e:
self.fail(e)
@require_torch
def test_infer_dynamic_axis_pytorch(self):
"""
Validate the dynamic axis generated for each parameters are correct
"""
from transformers import BertModel
model = BertModel(BertConfig.from_pretrained("bert-base-cased"))
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
self._test_infer_dynamic_axis(model, tokenizer, "pt")
@require_tf
def test_infer_dynamic_axis_tf(self):
"""
Validate the dynamic axis generated for each parameters are correct
"""
from transformers import TFBertModel
model = TFBertModel(BertConfig.from_pretrained("bert-base-cased"))
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
self._test_infer_dynamic_axis(model, tokenizer, "tf")
def _test_infer_dynamic_axis(self, model, tokenizer, framework):
nlp = FeatureExtractionPipeline(model, tokenizer)
variable_names = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
input_vars, output_vars, shapes, tokens = infer_shapes(nlp, framework)
# Assert all variables are present
self.assertEqual(len(shapes), len(variable_names))
self.assertTrue(all([var_name in shapes for var_name in variable_names]))
self.assertSequenceEqual(variable_names[:3], input_vars)
self.assertSequenceEqual(variable_names[3:], output_vars)
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"})
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"})
self.assertDictEqual(shapes["output_1"], {0: "batch"})
def test_ensure_valid_input(self):
"""
Validate parameters are correctly exported
GPT2 has "past" parameter in the middle of input_ids, token_type_ids and attention_mask.
ONNX doesn't support export with a dictionary, only a tuple. Thus we need to ensure we remove
token_type_ids and attention_mask for now to not having a None tensor in the middle
"""
# All generated args are valid
input_names = ["input_ids", "attention_mask", "token_type_ids"]
tokens = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
ordered_input_names, inputs_args = ensure_valid_input(FuncContiguousArgs(), tokens, input_names)
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(inputs_args), 3)
# Should have exactly the same input names
self.assertEqual(set(ordered_input_names), set(input_names))
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(inputs_args, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]))
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
ordered_input_names, inputs_args = ensure_valid_input(FuncNonContiguousArgs(), tokens, input_names)
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(inputs_args), 1)
self.assertEqual(len(ordered_input_names), 1)
# Should have only "input_ids"
self.assertEqual(inputs_args[0], tokens["input_ids"])
self.assertEqual(ordered_input_names[0], "input_ids")
def test_generate_identified_name(self):
generated = generate_identified_filename(Path("/home/something/my_fake_model.onnx"), "-test")
self.assertEqual("/home/something/my_fake_model-test.onnx", generated.as_posix())