huggingface-transformers/tests/test_tokenization_bert_japa...

226 строки
8.9 KiB
Python
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.testing_utils import custom_tokenizers
from transformers.tokenization_bert import WordpieceTokenizer
from transformers.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
MecabTokenizer,
)
from .test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BertJapaneseTokenizer
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"こんにちは",
"こん",
"にちは",
"ばんは",
"##こん",
"##にちは",
"##ばんは",
"世界",
"##世界",
"",
"##、",
"",
"##。",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、世界。"
output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。"
return input_text, output_text
def get_clean_sequence(self, tokenizer):
input_text, output_text = self.get_input_output_texts(tokenizer)
ids = tokenizer.encode(output_text, add_special_tokens=False)
text = tokenizer.decode(ids, clean_up_tokenization_spaces=False)
return text, ids
def test_pretokenized_inputs(self):
pass # TODO add if relevant
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
self.assertListEqual(tokens, ["こんにちは", "", "世界", "", "こん", "##ばんは", "", "世界", ""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
def test_mecab_tokenizer(self):
tokenizer = MecabTokenizer()
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone\n 発売された 。 "),
["アップルストア", "", "iPhone", "8", "", "発売", "", "", "", ""],
)
def test_mecab_tokenizer_lower(self):
tokenizer = MecabTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone\n 発売された 。 "),
["アップルストア", "", "iphone", "8", "", "発売", "", "", "", ""],
)
def test_mecab_tokenizer_with_option(self):
try:
tokenizer = MecabTokenizer(
do_lower_case=True, normalize_text=False, mecab_option="-d /usr/local/lib/mecab/dic/jumandic"
)
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone\n 発売された 。 "),
["アップルストア", "", "iPhone", "", "", "発売", "", "れた", "\u3000", ""],
)
def test_mecab_tokenizer_no_normalize(self):
tokenizer = MecabTokenizer(normalize_text=False)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone\n 発売された 。 "),
["アップルストア", "", "iPhone", "", "", "発売", "", "", "", " ", ""],
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは" "ばんは", "##こん", "##にちは", "##ばんは"]
vocab = {}
for (i, token) in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"])
self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"])
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"])
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese")
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_2 + [3]
@custom_tokenizers
class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BertJapaneseTokenizer
def setUp(self):
super().setUp()
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "", "", "", "", "", "", "", "", "", ""]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_tokenizer(self, **kwargs):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、世界。"
output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
return input_text, output_text
def test_pretokenized_inputs(self):
pass # TODO add if relevant
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character")
tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
self.assertListEqual(
tokens, ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]
)
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]
)
def test_character_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "", "", "", "", "", "", "", "" "", ""]
vocab = {}
for (i, token) in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["", "", "", "", ""])
self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["", "", "", "", "[UNK]"])
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char")
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_2 + [3]