226 строки
8.9 KiB
Python
226 строки
8.9 KiB
Python
# coding=utf-8
|
||
# Copyright 2018 The Google AI Language Team Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
|
||
import os
|
||
import unittest
|
||
|
||
from transformers.testing_utils import custom_tokenizers
|
||
from transformers.tokenization_bert import WordpieceTokenizer
|
||
from transformers.tokenization_bert_japanese import (
|
||
VOCAB_FILES_NAMES,
|
||
BertJapaneseTokenizer,
|
||
CharacterTokenizer,
|
||
MecabTokenizer,
|
||
)
|
||
|
||
from .test_tokenization_common import TokenizerTesterMixin
|
||
|
||
|
||
@custom_tokenizers
|
||
class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||
|
||
tokenizer_class = BertJapaneseTokenizer
|
||
|
||
def setUp(self):
|
||
super().setUp()
|
||
|
||
vocab_tokens = [
|
||
"[UNK]",
|
||
"[CLS]",
|
||
"[SEP]",
|
||
"こんにちは",
|
||
"こん",
|
||
"にちは",
|
||
"ばんは",
|
||
"##こん",
|
||
"##にちは",
|
||
"##ばんは",
|
||
"世界",
|
||
"##世界",
|
||
"、",
|
||
"##、",
|
||
"。",
|
||
"##。",
|
||
]
|
||
|
||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
||
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
||
|
||
def get_input_output_texts(self, tokenizer):
|
||
input_text = "こんにちは、世界。 \nこんばんは、世界。"
|
||
output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。"
|
||
return input_text, output_text
|
||
|
||
def get_clean_sequence(self, tokenizer):
|
||
input_text, output_text = self.get_input_output_texts(tokenizer)
|
||
ids = tokenizer.encode(output_text, add_special_tokens=False)
|
||
text = tokenizer.decode(ids, clean_up_tokenization_spaces=False)
|
||
return text, ids
|
||
|
||
def test_pretokenized_inputs(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_maximum_encoding_length_pair_input(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_maximum_encoding_length_single_input(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_full_tokenizer(self):
|
||
tokenizer = self.tokenizer_class(self.vocab_file)
|
||
|
||
tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
|
||
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
|
||
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
|
||
|
||
def test_mecab_tokenizer(self):
|
||
tokenizer = MecabTokenizer()
|
||
|
||
self.assertListEqual(
|
||
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
|
||
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
|
||
)
|
||
|
||
def test_mecab_tokenizer_lower(self):
|
||
tokenizer = MecabTokenizer(do_lower_case=True)
|
||
|
||
self.assertListEqual(
|
||
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
|
||
["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"],
|
||
)
|
||
|
||
def test_mecab_tokenizer_with_option(self):
|
||
try:
|
||
tokenizer = MecabTokenizer(
|
||
do_lower_case=True, normalize_text=False, mecab_option="-d /usr/local/lib/mecab/dic/jumandic"
|
||
)
|
||
except RuntimeError:
|
||
# if dict doesn't exist in the system, previous code raises this error.
|
||
return
|
||
|
||
self.assertListEqual(
|
||
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
|
||
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"],
|
||
)
|
||
|
||
def test_mecab_tokenizer_no_normalize(self):
|
||
tokenizer = MecabTokenizer(normalize_text=False)
|
||
|
||
self.assertListEqual(
|
||
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
|
||
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"],
|
||
)
|
||
|
||
def test_wordpiece_tokenizer(self):
|
||
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは" "ばんは", "##こん", "##にちは", "##ばんは"]
|
||
|
||
vocab = {}
|
||
for (i, token) in enumerate(vocab_tokens):
|
||
vocab[token] = i
|
||
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
|
||
|
||
self.assertListEqual(tokenizer.tokenize(""), [])
|
||
|
||
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"])
|
||
|
||
self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"])
|
||
|
||
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"])
|
||
|
||
def test_sequence_builders(self):
|
||
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese")
|
||
|
||
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
|
||
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
|
||
|
||
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
||
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
||
|
||
# 2 is for "[CLS]", 3 is for "[SEP]"
|
||
assert encoded_sentence == [2] + text + [3]
|
||
assert encoded_pair == [2] + text + [3] + text_2 + [3]
|
||
|
||
|
||
@custom_tokenizers
|
||
class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||
|
||
tokenizer_class = BertJapaneseTokenizer
|
||
|
||
def setUp(self):
|
||
super().setUp()
|
||
|
||
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
|
||
|
||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
||
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
||
|
||
def get_tokenizer(self, **kwargs):
|
||
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs)
|
||
|
||
def get_input_output_texts(self, tokenizer):
|
||
input_text = "こんにちは、世界。 \nこんばんは、世界。"
|
||
output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
|
||
return input_text, output_text
|
||
|
||
def test_pretokenized_inputs(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_maximum_encoding_length_pair_input(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_maximum_encoding_length_single_input(self):
|
||
pass # TODO add if relevant
|
||
|
||
def test_full_tokenizer(self):
|
||
tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character")
|
||
|
||
tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
|
||
self.assertListEqual(
|
||
tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]
|
||
)
|
||
self.assertListEqual(
|
||
tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]
|
||
)
|
||
|
||
def test_character_tokenizer(self):
|
||
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界" "、", "。"]
|
||
|
||
vocab = {}
|
||
for (i, token) in enumerate(vocab_tokens):
|
||
vocab[token] = i
|
||
tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]")
|
||
|
||
self.assertListEqual(tokenizer.tokenize(""), [])
|
||
|
||
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"])
|
||
|
||
self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"])
|
||
|
||
def test_sequence_builders(self):
|
||
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char")
|
||
|
||
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
|
||
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
|
||
|
||
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
||
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
||
|
||
# 2 is for "[CLS]", 3 is for "[SEP]"
|
||
assert encoded_sentence == [2] + text + [3]
|
||
assert encoded_pair == [2] + text + [3] + text_2 + [3]
|