170 строки
5.4 KiB
Python
170 строки
5.4 KiB
Python
from collections import Counter
|
|
import datasets
|
|
import transformers
|
|
from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
|
|
|
|
from transformers.utils import logging
|
|
|
|
logging.set_verbosity_info()
|
|
|
|
TOKENIZER_CLASSES = {
|
|
name: (getattr(transformers, name), getattr(transformers, name + "Fast")) for name in SLOW_TO_FAST_CONVERTERS
|
|
}
|
|
|
|
dataset = datasets.load_dataset("xnli", split="test+validation")
|
|
|
|
total = 0
|
|
perfect = 0
|
|
imperfect = 0
|
|
wrong = 0
|
|
|
|
|
|
def check_diff(spm_diff, tok_diff, slow, fast):
|
|
if spm_diff == list(reversed(tok_diff)):
|
|
# AAA -> AA+A vs A+AA case.
|
|
return True
|
|
elif len(spm_diff) == len(tok_diff) and fast.decode(spm_diff) == fast.decode(tok_diff):
|
|
# Second order OK
|
|
# Barrich -> Barr + ich vs Bar + rich
|
|
return True
|
|
spm_reencoded = slow.encode(slow.decode(spm_diff))
|
|
tok_reencoded = fast.encode(fast.decode(spm_diff))
|
|
if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded:
|
|
# Type 3 error.
|
|
# Snehagatha ->
|
|
# Sne, h, aga, th, a
|
|
# Sne, ha, gat, ha
|
|
# Encoding the wrong with sp does not even recover what spm gave us
|
|
# It fits tokenizer however...
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_LTR_mark(line, idx, fast):
|
|
enc = fast.encode_plus(line)[0]
|
|
offsets = enc.offsets
|
|
curr, prev = offsets[idx], offsets[idx - 1]
|
|
if curr is not None and line[curr[0] : curr[1]] == "\u200f":
|
|
return True
|
|
if prev is not None and line[prev[0] : prev[1]] == "\u200f":
|
|
return True
|
|
|
|
|
|
def check_details(line, spm_ids, tok_ids, slow, fast):
|
|
# Encoding can be the same with same result AAA -> A + AA vs AA + A
|
|
# We can check that we use at least exactly the same number of tokens.
|
|
for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)):
|
|
if spm_id != tok_id:
|
|
break
|
|
first = i
|
|
for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))):
|
|
if spm_id != tok_id:
|
|
break
|
|
last = len(spm_ids) - i
|
|
|
|
spm_diff = spm_ids[first:last]
|
|
tok_diff = tok_ids[first:last]
|
|
|
|
if check_diff(spm_diff, tok_diff, slow, fast):
|
|
return True
|
|
|
|
if check_LTR_mark(line, first, fast):
|
|
return True
|
|
|
|
if last - first > 5:
|
|
# We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems
|
|
spms = Counter(spm_ids[first:last])
|
|
toks = Counter(tok_ids[first:last])
|
|
|
|
removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si}
|
|
min_width = 3
|
|
for i in range(last - first - min_width):
|
|
if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)):
|
|
possible_matches = [
|
|
k
|
|
for k in range(last - first - min_width)
|
|
if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width]
|
|
]
|
|
for j in possible_matches:
|
|
if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details(
|
|
line,
|
|
spm_ids[first + i : last],
|
|
tok_ids[first + j : last],
|
|
slow,
|
|
fast,
|
|
):
|
|
return True
|
|
|
|
print(f"Spm: {[fast.decode([spm_ids[i]]) for i in range(first, last)]}")
|
|
try:
|
|
print(f"Tok: {[fast.decode([tok_ids[i]]) for i in range(first, last)]}")
|
|
except Exception:
|
|
pass
|
|
|
|
ok_start = fast.decode(spm_ids[:first])
|
|
ok_end = fast.decode(spm_ids[last:])
|
|
wrong = fast.decode(spm_ids[first:last])
|
|
print()
|
|
print(wrong)
|
|
return False
|
|
|
|
|
|
def test_string(slow, fast, text):
|
|
global perfect
|
|
global imperfect
|
|
global wrong
|
|
global total
|
|
|
|
slow_ids = slow.encode(text)
|
|
fast_ids = fast.encode(text)
|
|
|
|
skip_assert = False
|
|
total += 1
|
|
|
|
if slow_ids != fast_ids:
|
|
if check_details(text, slow_ids, fast_ids, slow, fast):
|
|
skip_assert = True
|
|
imperfect += 1
|
|
else:
|
|
wrong += 1
|
|
else:
|
|
perfect += 1
|
|
|
|
if total % 10000 == 0:
|
|
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
|
|
|
|
if skip_assert:
|
|
return
|
|
|
|
assert (
|
|
slow_ids == fast_ids
|
|
), f"line {text} : \n\n{slow_ids}\n{fast_ids}\n\n{slow.tokenize(text)}\n{fast.tokenize(text)}"
|
|
|
|
|
|
def test_tokenizer(slow, fast):
|
|
global batch_total
|
|
for i in range(len(dataset)):
|
|
# premise, all languages
|
|
for text in dataset[i]["premise"].values():
|
|
test_string(slow, fast, text)
|
|
|
|
# hypothesis, all languages
|
|
for text in dataset[i]["hypothesis"]["translation"]:
|
|
test_string(slow, fast, text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
for name, (slow_class, fast_class) in TOKENIZER_CLASSES.items():
|
|
checkpoint_names = list(slow_class.max_model_input_sizes.keys())
|
|
for checkpoint in checkpoint_names:
|
|
imperfect = 0
|
|
perfect = 0
|
|
wrong = 0
|
|
total = 0
|
|
|
|
print(f"========================== Checking {name}: {checkpoint} ==========================")
|
|
slow = slow_class.from_pretrained(checkpoint, force_download=True)
|
|
fast = fast_class.from_pretrained(checkpoint, force_download=True)
|
|
test_tokenizer(slow, fast)
|
|
print(f"Accuracy {perfect * 100 / total:.2f}")
|