133 строки
5.1 KiB
Python
133 строки
5.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
import unittest
|
|
|
|
from tests.test_configuration_common import ConfigTester
|
|
from tests.test_modeling_tf_bart import TFBartModelTester
|
|
from tests.test_modeling_tf_common import TFModelTesterMixin
|
|
from transformers import BlenderbotConfig, BlenderbotSmallTokenizer, is_tf_available
|
|
from transformers.file_utils import cached_property
|
|
from transformers.testing_utils import is_pt_tf_cross_test, require_tf, require_tokenizers, slow
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import TFAutoModelForSeq2SeqLM, TFBlenderbotForConditionalGeneration
|
|
|
|
|
|
class ModelTester(TFBartModelTester):
|
|
config_updates = dict(
|
|
normalize_before=True,
|
|
static_position_embeddings=True,
|
|
do_blenderbot_90_layernorm=True,
|
|
normalize_embeddings=True,
|
|
)
|
|
config_cls = BlenderbotConfig
|
|
|
|
|
|
@require_tf
|
|
class TestTFBlenderbotCommon(TFModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
|
|
all_generative_model_classes = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
|
|
model_tester_cls = ModelTester
|
|
is_encoder_decoder = True
|
|
test_pruning = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = self.model_tester_cls(self)
|
|
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_inputs_embeds(self):
|
|
# inputs_embeds not supported
|
|
pass
|
|
|
|
def test_saved_model_with_hidden_states_output(self):
|
|
# Should be uncommented during patrick TF refactor
|
|
pass
|
|
|
|
def test_saved_model_with_attentions_output(self):
|
|
# Should be uncommented during patrick TF refactor
|
|
pass
|
|
|
|
def test_compile_tf_model(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
|
|
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
|
|
|
|
model_class = self.all_generative_model_classes[0]
|
|
input_ids = {
|
|
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
|
|
"input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
|
|
}
|
|
|
|
# Prepare our model
|
|
model = model_class(config)
|
|
model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving.
|
|
# Let's load it from the disk to be sure we can use pretrained weights
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
|
|
outputs_dict = model(input_ids)
|
|
hidden_states = outputs_dict[0]
|
|
|
|
# Add a dense layer on top to test integration with other keras modules
|
|
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
|
|
|
|
# Compile extended model
|
|
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
|
|
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
|
|
|
|
|
|
@is_pt_tf_cross_test
|
|
@require_tokenizers
|
|
class TFBlenderbot90MIntegrationTests(unittest.TestCase):
|
|
src_text = [
|
|
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like i'm going to throw up.\nand why is that?"
|
|
]
|
|
model_name = "facebook/blenderbot-90M"
|
|
|
|
@cached_property
|
|
def tokenizer(self):
|
|
return BlenderbotSmallTokenizer.from_pretrained(self.model_name)
|
|
|
|
@cached_property
|
|
def model(self):
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name, from_pt=True)
|
|
return model
|
|
|
|
@slow
|
|
def test_90_generation_from_long_input(self):
|
|
model_inputs = self.tokenizer(self.src_text, return_tensors="tf")
|
|
generated_ids = self.model.generate(
|
|
model_inputs.input_ids,
|
|
attention_mask=model_inputs.attention_mask,
|
|
num_beams=2,
|
|
use_cache=True,
|
|
)
|
|
generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)[0]
|
|
assert generated_words in (
|
|
"i don't know. i just feel like i'm going to throw up. it's not fun.",
|
|
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
|
|
"i'm not sure. i just feel like i've been in a bad situation.",
|
|
)
|