145 строки
6.1 KiB
Python
145 строки
6.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch Transformer XL model evaluation script.
|
|
Adapted from https://github.com/kimiyoung/transformer-xl.
|
|
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
|
|
|
|
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import time
|
|
|
|
import torch
|
|
|
|
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel
|
|
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model")
|
|
parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name")
|
|
parser.add_argument(
|
|
"--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate"
|
|
)
|
|
parser.add_argument("--batch_size", type=int, default=10, help="batch size")
|
|
parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict")
|
|
parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context")
|
|
parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads")
|
|
parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index")
|
|
parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available")
|
|
parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir")
|
|
parser.add_argument("--no_log", action="store_true", help="do not log the eval result")
|
|
parser.add_argument("--same_length", action="store_true", help="set same length attention with masking")
|
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
|
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
assert args.ext_len >= 0, "extended context length must be non-negative"
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
logger.info("device: {}".format(device))
|
|
|
|
# Load a pre-processed dataset
|
|
# You can also build the corpus yourself using TransfoXLCorpus methods
|
|
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
|
|
# and tokenizing the dataset
|
|
# The pre-processed corpus is a convertion (using the conversion script )
|
|
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
|
|
|
|
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
|
|
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
|
|
|
|
# Load a pre-trained model
|
|
model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
|
|
model.to(device)
|
|
|
|
logger.info(
|
|
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format(
|
|
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len
|
|
)
|
|
)
|
|
|
|
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
|
|
if args.clamp_len > 0:
|
|
model.clamp_len = args.clamp_len
|
|
if args.same_length:
|
|
model.same_length = True
|
|
|
|
###############################################################################
|
|
# Evaluation code
|
|
###############################################################################
|
|
def evaluate(eval_iter):
|
|
# Turn on evaluation mode which disables dropout.
|
|
model.eval()
|
|
total_len, total_loss = 0, 0.0
|
|
start_time = time.time()
|
|
with torch.no_grad():
|
|
mems = None
|
|
for idx, (data, target, seq_len) in enumerate(eval_iter):
|
|
ret = model(data, lm_labels=target, mems=mems)
|
|
loss, _, mems = ret
|
|
loss = loss.mean()
|
|
total_loss += seq_len * loss.item()
|
|
total_len += seq_len
|
|
total_time = time.time() - start_time
|
|
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
|
|
return total_loss / total_len
|
|
|
|
# Run on test data.
|
|
if args.split == "all":
|
|
test_loss = evaluate(te_iter)
|
|
valid_loss = evaluate(va_iter)
|
|
elif args.split == "valid":
|
|
valid_loss = evaluate(va_iter)
|
|
test_loss = None
|
|
elif args.split == "test":
|
|
test_loss = evaluate(te_iter)
|
|
valid_loss = None
|
|
|
|
def format_log(loss, split):
|
|
log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss))
|
|
return log_str
|
|
|
|
log_str = ""
|
|
if valid_loss is not None:
|
|
log_str += format_log(valid_loss, "valid")
|
|
if test_loss is not None:
|
|
log_str += format_log(test_loss, "test")
|
|
|
|
logger.info("=" * 100)
|
|
logger.info(log_str)
|
|
logger.info("=" * 100)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|