huggingface-transformers/examples/question-answering
Suraj Patil e49393c361
[examples] Add trainer support for question-answering (#4829)
* add SquadDataset

* add DataCollatorForQuestionAnswering

* update __init__

* add run_squad with  trainer

* add DataCollatorForQuestionAnswering in __init__

* pass data_collator to trainer

* doc tweak

* Update run_squad_trainer.py

* Update __init__.py

* Update __init__.py

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2020-07-07 08:57:08 -04:00
..
README.md [examples] Add trainer support for question-answering (#4829) 2020-07-07 08:57:08 -04:00
run_squad.py save_pretrained: mkdir(exist_ok=True) (#5258) 2020-06-28 14:53:47 -04:00
run_squad_trainer.py [examples] Add trainer support for question-answering (#4829) 2020-07-07 08:57:08 -04:00
run_tf_squad.py Clean up diffs in Trainer/TFTrainer (#5417) 2020-07-01 11:00:20 -04:00

README.md

SQuAD

Based on the script run_squad.py.

Fine-tuning BERT on SQuAD1.0

This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a $SQUAD_DIR directory.

And for SQuAD2.0, you need to download:

export SQUAD_DIR=/path/to/SQUAD

python run_squad.py \
  --model_type bert \
  --model_name_or_path bert-base-uncased \
  --do_train \
  --do_eval \
  --do_lower_case \
  --train_file $SQUAD_DIR/train-v1.1.json \
  --predict_file $SQUAD_DIR/dev-v1.1.json \
  --per_gpu_train_batch_size 12 \
  --learning_rate 3e-5 \
  --num_train_epochs 2.0 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir /tmp/debug_squad/

Training with the previously defined hyper-parameters yields the following results:

f1 = 88.52
exact_match = 81.22

Distributed training

Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1:

python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
    --do_eval \
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \

Training with the previously defined hyper-parameters yields the following results:

f1 = 93.15
exact_match = 86.91

This fine-tuned model is available as a checkpoint under the reference bert-large-uncased-whole-word-masking-finetuned-squad.

Fine-tuning XLNet on SQuAD

This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset. See above to download the data for SQuAD .

Command for SQuAD1.0:
export SQUAD_DIR=/path/to/SQUAD

python run_squad.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train \
    --do_eval \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ./wwm_cased_finetuned_squad/ \
    --per_gpu_eval_batch_size=4  \
    --per_gpu_train_batch_size=4   \
    --save_steps 5000
Command for SQuAD2.0:
export SQUAD_DIR=/path/to/SQUAD

python run_squad.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train \
    --do_eval \
    --version_2_with_negative \
    --train_file $SQUAD_DIR/train-v2.0.json \
    --predict_file $SQUAD_DIR/dev-v2.0.json \
    --learning_rate 3e-5 \
    --num_train_epochs 4 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ./wwm_cased_finetuned_squad/ \
    --per_gpu_eval_batch_size=2  \
    --per_gpu_train_batch_size=2   \
    --save_steps 5000

Larger batch size may improve the performance while costing more memory.

Results for SQuAD1.0 with the previously defined hyper-parameters:
{
"exact": 85.45884578997162,
"f1": 92.5974600601065,
"total": 10570,
"HasAns_exact": 85.45884578997162,
"HasAns_f1": 92.59746006010651,
"HasAns_total": 10570
}
Results for SQuAD2.0 with the previously defined hyper-parameters:
{
"exact": 80.4177545691906,
"f1": 84.07154997729623,
"total": 11873,
"HasAns_exact": 76.73751686909581,
"HasAns_f1": 84.05558584352873,
"HasAns_total": 5928,
"NoAns_exact": 84.0874684608915,
"NoAns_f1": 84.0874684608915,
"NoAns_total": 5945
}

SQuAD with the Tensorflow Trainer

python run_tf_squad.py \
    --model_name_or_path bert-base-uncased \
    --output_dir model \
    --max_seq_length 384 \
    --num_train_epochs 2 \
    --per_gpu_train_batch_size 8 \
    --per_gpu_eval_batch_size 16 \
    --do_train \
    --logging_dir logs \    
    --logging_steps 10 \
    --learning_rate 3e-5 \
    --doc_stride 128    

For the moment evaluation is not available in the Tensorflow Trainer only the training.