247 строки
9.3 KiB
Python
247 строки
9.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
|
|
|
|
|
|
import dataclasses
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Callable, Dict, Optional
|
|
|
|
import numpy as np
|
|
|
|
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset
|
|
from transformers import GlueDataTrainingArguments as DataTrainingArguments
|
|
from transformers import (
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
glue_compute_metrics,
|
|
glue_output_modes,
|
|
glue_tasks_num_labels,
|
|
set_seed,
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
training_args.local_rank,
|
|
training_args.device,
|
|
training_args.n_gpu,
|
|
bool(training_args.local_rank != -1),
|
|
training_args.fp16,
|
|
)
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed
|
|
set_seed(training_args.seed)
|
|
|
|
try:
|
|
num_labels = glue_tasks_num_labels[data_args.task_name]
|
|
output_mode = glue_output_modes[data_args.task_name]
|
|
except KeyError:
|
|
raise ValueError("Task not found: %s" % (data_args.task_name))
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
finetuning_task=data_args.task_name,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
# Get datasets
|
|
train_dataset = (
|
|
GlueDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
|
|
)
|
|
eval_dataset = (
|
|
GlueDataset(data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir)
|
|
if training_args.do_eval
|
|
else None
|
|
)
|
|
test_dataset = (
|
|
GlueDataset(data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)
|
|
if training_args.do_predict
|
|
else None
|
|
)
|
|
|
|
def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]:
|
|
def compute_metrics_fn(p: EvalPrediction):
|
|
if output_mode == "classification":
|
|
preds = np.argmax(p.predictions, axis=1)
|
|
elif output_mode == "regression":
|
|
preds = np.squeeze(p.predictions)
|
|
return glue_compute_metrics(task_name, preds, p.label_ids)
|
|
|
|
return compute_metrics_fn
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
compute_metrics=build_compute_metrics_fn(data_args.task_name),
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
trainer.train(
|
|
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
|
|
)
|
|
trainer.save_model()
|
|
# For convenience, we also re-save the tokenizer to the same directory,
|
|
# so that you can share your model easily on huggingface.co/models =)
|
|
if trainer.is_world_master():
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
# Evaluation
|
|
eval_results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
|
eval_datasets = [eval_dataset]
|
|
if data_args.task_name == "mnli":
|
|
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
|
|
eval_datasets.append(
|
|
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir)
|
|
)
|
|
|
|
for eval_dataset in eval_datasets:
|
|
trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name)
|
|
eval_result = trainer.evaluate(eval_dataset=eval_dataset)
|
|
|
|
output_eval_file = os.path.join(
|
|
training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt"
|
|
)
|
|
if trainer.is_world_master():
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results {} *****".format(eval_dataset.args.task_name))
|
|
for key, value in eval_result.items():
|
|
logger.info(" %s = %s", key, value)
|
|
writer.write("%s = %s\n" % (key, value))
|
|
|
|
eval_results.update(eval_result)
|
|
|
|
if training_args.do_predict:
|
|
logging.info("*** Test ***")
|
|
test_datasets = [test_dataset]
|
|
if data_args.task_name == "mnli":
|
|
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
|
|
test_datasets.append(
|
|
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)
|
|
)
|
|
|
|
for test_dataset in test_datasets:
|
|
predictions = trainer.predict(test_dataset=test_dataset).predictions
|
|
if output_mode == "classification":
|
|
predictions = np.argmax(predictions, axis=1)
|
|
|
|
output_test_file = os.path.join(
|
|
training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt"
|
|
)
|
|
if trainer.is_world_master():
|
|
with open(output_test_file, "w") as writer:
|
|
logger.info("***** Test results {} *****".format(test_dataset.args.task_name))
|
|
writer.write("index\tprediction\n")
|
|
for index, item in enumerate(predictions):
|
|
if output_mode == "regression":
|
|
writer.write("%d\t%3.3f\n" % (index, item))
|
|
else:
|
|
item = test_dataset.get_labels()[item]
|
|
writer.write("%d\t%s\n" % (index, item))
|
|
return eval_results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|