603cd81a01
* readme m3hrdadfi/albert-fa-base-v2 model_card readme for m3hrdadfi/albert-fa-base-v2 * Update model_cards/m3hrdadfi/albert-fa-base-v2/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com> |
||
---|---|---|
.. | ||
README.md |
README.md
language | tags | license | datasets | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fa |
|
apache-2.0 |
|
ALBERT-Persian
ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language
Introduction
ALBERT-Persian trained on a massive amount of public corpora (Persian Wikidumps, MirasText) and six other manually crawled text data from a various type of websites (BigBang Page scientific
, Chetor lifestyle
, Eligasht itinerary
, Digikala digital magazine
, Ted Talks general conversational
, Books novels, storybooks, short stories from old to the contemporary era
).
Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you.
How to use
TensorFlow 2.0
from transformers import AutoConfig, AutoTokenizer, TFAutoModel
config = AutoConfig.from_pretrained("m3hrdadfi/albert-fa-base-v2")
tokenizer = AutoTokenizer.from_pretrained("m3hrdadfi/albert-fa-base-v2")
model = TFAutoModel.from_pretrained("m3hrdadfi/albert-fa-base-v2")
text = "ما در هوشواره معتقدیم با انتقال صحیح دانش و آگاهی، همه افراد میتوانند از ابزارهای هوشمند استفاده کنند. شعار ما هوش مصنوعی برای همه است."
tokenizer.tokenize(text)
>>> ['▁ما', '▁در', '▁هوش', 'واره', '▁معتقد', 'یم', '▁با', '▁انتقال', '▁صحیح', '▁دانش', '▁و', '▁اگاه', 'ی', '،', '▁همه', '▁افراد', '▁می', '▁توانند', '▁از', '▁ابزارهای', '▁هوشمند', '▁استفاده', '▁کنند', '.', '▁شعار', '▁ما', '▁هوش', '▁مصنوعی', '▁برای', '▁همه', '▁است', '.']
Pytorch
from transformers import AutoConfig, AutoTokenizer, AutoModel
config = AutoConfig.from_pretrained("m3hrdadfi/albert-fa-base-v2")
tokenizer = AutoTokenizer.from_pretrained("m3hrdadfi/albert-fa-base-v2")
model = AutoModel.from_pretrained("m3hrdadfi/albert-fa-base-v2")
Training
ALBERT-Persian is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M
documents, 73M
sentences, and 1.3B
words, like the way we did for ParsBERT.
Goals
Objective goals during training are as below (after 140K steps).
***** Eval results *****
global_step = 140000
loss = 2.0080082
masked_lm_accuracy = 0.6141017
masked_lm_loss = 1.9963315
sentence_order_accuracy = 0.985
sentence_order_loss = 0.06908702
Derivative models
Base Config
Albert Model
Albert Sentiment Analysis
- m3hrdadfi/albert-fa-base-v2-sentiment-digikala
- m3hrdadfi/albert-fa-base-v2-sentiment-snappfood
- m3hrdadfi/albert-fa-base-v2-sentiment-deepsentipers-binary
- m3hrdadfi/albert-fa-base-v2-sentiment-deepsentipers-multi
- m3hrdadfi/albert-fa-base-v2-sentiment-binary
- m3hrdadfi/albert-fa-base-v2-sentiment-multi
- m3hrdadfi/albert-fa-base-v2-sentiment-multi
Albert Text Classification
Albert NER
- m3hrdadfi/albert-fa-base-v2-ner
- m3hrdadfi/albert-fa-base-v2-ner-arman
- m3hrdadfi/albert-fa-base-v2-ner-arman
Eval results
The following tables summarize the F1 scores obtained by ALBERT-Persian as compared to other models and architectures.
Sentiment Analysis (SA) Task
Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT | DeepSentiPers |
---|---|---|---|---|
Digikala User Comments | 81.12 | 81.74 | 80.74 | - |
SnappFood User Comments | 85.79 | 88.12 | 87.87 | - |
SentiPers (Multi Class) | 66.12 | 71.11 | - | 69.33 |
SentiPers (Binary Class) | 91.09 | 92.13 | - | 91.98 |
Text Classification (TC) Task
Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT |
---|---|---|---|
Digikala Magazine | 92.33 | 93.59 | 90.72 |
Persian News | 97.01 | 97.19 | 95.79 |
Named Entity Recognition (NER) Task
Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF |
---|---|---|---|---|---|---|---|---|
PEYMA | 88.99 | 93.10 | 86.64 | - | 90.59 | - | 84.00 | - |
ARMAN | 97.43 | 98.79 | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 |
BibTeX entry and citation info
Please cite in publications as the following:
@misc{ALBERT-Persian,
author = {Mehrdad Farahani},
title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}},
}
@article{ParsBERT,
title={ParsBERT: Transformer-based Model for Persian Language Understanding},
author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
journal={ArXiv},
year={2020},
volume={abs/2005.12515}
}
Questions?
Post a Github issue on the ALBERT-Persian repo.