010e0460b2 | ||
---|---|---|
.. | ||
README.md |
README.md
This model is ALBERT base v2 trained on SQuAD v2 as:
export SQUAD_DIR=../../squad2
python3 run_squad.py
--model_type albert
--model_name_or_path albert-base-v2
--do_train
--do_eval
--overwrite_cache
--do_lower_case
--version_2_with_negative
--save_steps 100000
--train_file $SQUAD_DIR/train-v2.0.json
--predict_file $SQUAD_DIR/dev-v2.0.json
--per_gpu_train_batch_size 8
--num_train_epochs 3
--learning_rate 3e-5
--max_seq_length 384
--doc_stride 128
--output_dir ./tmp/albert_fine/
Performance on a dev subset is close to the original paper:
Results:
{
'exact': 78.71010200723923,
'f1': 81.89228117126069,
'total': 6078,
'HasAns_exact': 75.39518900343643,
'HasAns_f1': 82.04167868004215,
'HasAns_total': 2910,
'NoAns_exact': 81.7550505050505,
'NoAns_f1': 81.7550505050505,
'NoAns_total': 3168,
'best_exact': 78.72655478775913,
'best_exact_thresh': 0.0,
'best_f1': 81.90873395178066,
'best_f1_thresh': 0.0
}
We are hopeful this might save you time, energy, and compute. Cheers!