hummingbird/benchmarks/operators
masahi 71c951d31c
Introduce BatchContainer for batch by batch prediction use case (#377)
* introducing BatchContainer

* BatchContainer basic functionality done

* pass test_input to _convert

* introduce convert_batch API

* use convert_batch in the benchmark

* store _batch_size attribute

* test working

* run black, add concat output option, fix benchmark

* fix getattr

* fix operator benchmark

* support transform and decision function

* make sure input is tuple not list

* fix torch backend prediction

* begin fixing tests

* squeeze and ravel on onnx regression output

* all tests in test_extra_conf.py working

* restore BATCH_SIZE and k neighbor test

* fix onnxml test

* run black on test_extra_conf.py

* fix test_sklearn_normalizer_converter.py

* fix test_lightgbm_converter.py

* fixing more onnxml tests

* fixed remaining onnxml tests

* use format, fix pylint

* fix typo

* add document

* add missing doc

* fix typo

* doc update, remove unused stuff
2020-12-14 14:09:37 -08:00
..
README.md Add scripts for the operators bench (#330) 2020-10-23 15:40:46 -07:00
__init__.py Add scripts for the operators bench (#330) 2020-10-23 15:40:46 -07:00
run.py Add TVM backend (#236) 2020-11-03 13:21:02 -08:00
score.py Introduce BatchContainer for batch by batch prediction use case (#377) 2020-12-14 14:09:37 -08:00
train.py Introduce BatchContainer for batch by batch prediction use case (#377) 2020-12-14 14:09:37 -08:00

README.md

Operators Experiments

This directory contains the script to reproduce the experiments of Section 6.1.2 of the paper A Tensor Compiler for Unified Machine Learning Prediction Serving. This script is configured to run sklearn and compare it against onnx-ml, torchscript and onnx (the last 2 using Hummingbird), for the iris dataset over 1 core, and with batch of 1M.

  • python run.py will run the benchmarks for CPU
  • python run.py -gpu will run the benchmarks for GPU