This commit is contained in:
Ken McMillan 2017-12-04 10:59:20 -08:00
Родитель 44222d9f09
Коммит af60c5979d
7 изменённых файлов: 207 добавлений и 136 удалений

Просмотреть файл

@ -1,15 +1,14 @@
#lang ivy1.6
#lang ivy1.7
include collections
include order
module set(index,elem) = {
module set(elem) = {
instance arr:array(index.t,elem)
alias t = arr.t
function contains(X:t,y:elem) = exists Z. 0 <= Z & Z < arr.end(X) & arr.value(X,Z) = y
type this
alias t = this
relation contains(X:t,Y:elem)
action emptyset returns(s:t)
action add(s:t,e:elem) returns (s:t)
@ -23,29 +22,31 @@ module set(index,elem) = {
}
object impl = {
instance index : unbounded_sequence
instance arr : array(index.t,elem)
destructor repr(X:t) : arr
definition contains(X:t,y:elem) = exists Z. 0 <= Z & Z < repr(X).end & repr(X).value(Z) = y
implement emptyset {
s := arr.create(0,0)
repr(s) := arr.create(0,0)
}
implement add {
if ~contains(s,e) {
s := arr.resize(s,index.next(arr.end(s)),e)
repr(s) := arr.resize(repr(s),index.next(arr.end(repr(s))),e)
}
}
}
isolate iso = this
}
include order
instance index : unbounded_sequence
type elem
instance s : set(index,elem)
instance s : set(elem)
export s.emptyset
export s.add
isolate iso_s = s with index
isolate iso_index = index,index.impl
extract iso_impl = s,index
extract iso_impl = s

Просмотреть файл

@ -1,16 +1,16 @@
#lang ivy1.6
#lang ivy1.7
include collections
module set(index,elem) = {
include order
instance arr:array(index.t,elem)
module set(elem) = {
alias t = arr.t
function valid(X:t) = forall Y,Z. (0 <= Y & Y < arr.end(X) & 0 <= Z & Z < arr.end(X) & arr.value(X,Y) = arr.value(X,Z) -> Y = Z)
function contains(X:t,y:elem) = exists Z. 0 <= Z & Z < arr.end(X) & arr.value(X,Z) = y
type this
alias t = this
relation contains(X:t,Y:elem)
relation valid(X:t)
action emptyset returns(s:t)
action add(s:t,e:elem) returns (s:t)
action remove(s:t,e:elem) returns (s:t)
@ -36,40 +36,46 @@ module set(index,elem) = {
}
object impl = {
instance index : unbounded_sequence
instance arr : array(index.t,elem)
destructor repr(X:t) : arr
definition contains(X:t,y:elem) =
exists Z. 0 <= Z & Z < repr(X).end & repr(X).value(Z) = y
definition valid(X:t) =
forall Y,Z. (0 <= Y & Y < repr(X).end & 0 <= Z & Z < repr(X).end
& repr(X).value(Y) = repr(X).value(Z) -> Y = Z)
implement emptyset {
s := arr.create(0,0)
repr(s) := arr.create(0,0)
}
implement add {
if ~contains(s,e) {
assert ~contains(s,e);
s := arr.resize(s,index.next(arr.end(s)),e)
repr(s) := arr.resize(repr(s),index.next(arr.end(repr(s))),e)
}
}
implement remove {
if some (i:index.t) 0 <= i & i < arr.end(s) & arr.value(s,i) = e {
local last:index.t {
last := index.prev(arr.end(s));
s := arr.set(s,i,arr.get(s,last));
s := arr.resize(s,last,0)
}
if some (i:index.t) 0 <= i & i < repr(s).end & repr(s).value(i) = e {
var last := repr(s).end.prev;
repr(s) := repr(s).set(i,repr(s).get(last));
repr(s) := repr(s).resize(last,0)
}
}
}
isolate iso = this
}
include order
instance index : unbounded_sequence
type elem
instance s : set(index,elem)
instance s : set(elem)
export s.emptyset
export s.add
export s.remove
isolate iso_s = s with index
isolate iso_index = index
extract iso_impl = s,index
extract iso_impl = s

Просмотреть файл

@ -205,38 +205,35 @@ interfaces.
As an example, consider using an array as a representation of a
set. Here is the start of a module that accomplishes that:
include collections
#lang ivy1.7
module set(elem) = {
module set(index,elem) = {
instance arr:array(index.t,elem)
alias t = arr.t
function contains(X:t,y:elem) = exists Z. 0 <= Z & Z < arr.end(X) & arr.value(X,Z) = y
...
}
Our set representation gives us a type `t` representing a set of
values of the given type `elem`. The type `t` is just an alias for
an array type, which we create by instantiating the module `array`.
Our set type also defines a *representation function*. This tells us
what abstract set a given value of type `set.t` represents. In
particular, `contains(x,y)` is `true` if a given `elem` *y* can be
found somewhere in the array representing set `x`. The representation
function allows us write specifications using the abstract value that
is represented. This means we can can pass around values of type
`set.t` as if they were actually abstract sets instead of arrays.
Let's start to build some operations on concrete sets:
module set(index,elem) = {
...
type this
alias t = this
relation contains(X:t,Y:elem)
action emptyset returns(s:t)
action add(s:t,e:elem) returns (s:t)
...
Notice something new here: `type this`. This declares a type with the
same name as the object we are declaring (which won't be known until
we instantiate this module). For convenience, we create an alias `t`
for this type. This interface of our abstact set type contains a
relation and two actions.
The relation `contains` acts as a *representation function*. This
tells us what abstract set a given value of type `set` represents.
The representation function allows us write specifications using the
abstract value that is represented. This means we can can pass around
values of type `set` as if they were actually abstract sets instead of
arrays.
Now let's specify the semantics of our two set operations in terms of
the `contains` relation.
module set(elem) = {
...
object spec = {
after emptyset {
@ -246,37 +243,72 @@ Let's start to build some operations on concrete sets:
assert contains(s,X) <-> (contains(old s,X) | X = e)
}
}
}
Here we've specified two operations on sets, using the representation
function `contains`. The action `emptyset` returns a representation of
the empty set, while `add` returns set `s` with element `e`
added. Notice that the set parameter of `add` is both input and
output. This indiciates to the compiler that we wish to avoid copying
if possible.
The action `emptyset` returns a representation of the empty set, while
`add` returns set `s` with element `e` added. Notice that the set
parameter of `add` is both input and output. This indiciates to the
compiler that we wish to avoid copying if possible. In most cases,
this will allowed the compiled code of `add` to modify the set in
place.
Let's have a hack at implementing these operations:
Let's have a hack at implementing these operations. The implementation
usually provides a concrete data representation, a definition for each
function or relation in the interface, and code for each
action. Typically it instantiates some modules to provide the concrete
representation. Here's one way we could implement `set`:
include collections
include order
module set(index,elem) = {
...
object impl = {
implement emptyset {
s := arr.create(0,0)
}
instance index : unbounded_sequence
instance arr : array(index.t,elem)
destructor repr(X:t) : arr
implement add {
if ~contains(s,e) {
s := arr.resize(s,index.next(arr.end(s)),e)
}
}
definition contains(X:t,y:elem) = exists Z. 0 <= Z & Z < repr(X).end & repr(X).value(Z) = y
implement emptyset {
repr(s) := arr.create(0,0)
}
implement add {
if ~contains(s,e) {
repr(s) := arr.resize(repr(s),index.next(arr.end(repr(s))),e)
}
}
isolate iso = this
}
This implementation uses an unbounded array as a representation.
The concrete type is usually provide by giving the abstract type a
*private destructor*, in this case the function `repr` from type `t` to
the array type. Giving the destructor in this way is equivalent to
writing:
type t = struct {
repr : arr
}
except the that field `repr`, being a component of the implementation,
is not visible to users of `set` (it's similar to a private member in
C++). We use the function `repr` to access the internal representation
of a set.
Next, we give the definition of `contains` in terms of `repr`. This
definition is also private. We say that `contains(x,y)` is `true`
if a given `elem` *y* can be found somewhere in the array representing
set `x`.
The implementation of `emptyset` returns an empty array. To add an
element to a set, we test whether the element is already present. If
not, we resize the array to make it one value larger, where the added
value is `e`.
value is `e`, the new element.
Finally, we create an isolate containing our object so it will be
verified separately.
Notice that in the implementation of `add`, we evaluate the predicate
`contains`. IVy recognizes that `contains` is executable because the
@ -303,38 +335,24 @@ place. On the other hand, evaluating `contains` will still be linear
time in the array size, since it loops over the array. This approach
is only practical for small sets.
To try out our sets, we'll need an actual index type for the arrays.
Let's grab a specification of a suitable abstract type from the
standard library:
To try out our sets, we instantiate a set type:
include order
instance range : unbounded_sequence
This gives us a discrete totally ordered set with `next` and `prev`.
We create a set type:
instance s : set(index,elem)
type elem
instance s : set(elem)
We export our two actions:
export s.emptyset
export s.add
We isolate our two objects like this:
isolate iso_index = index
isolate iso_s = s with index
Then we verify:
$ivy_check arrayset.ivy
ivy_check arrayset.ivy
Checking isolate iso_index...
trying ext:index.next...
Checking isolate s.impl.index.iso...
trying ext:s.impl.index.next...
checking consecution...
Checking isolate iso_s...
Checking isolate s.iso...
trying ext:s.add...
checking consecution...
trying ext:s.emptyset...
@ -342,8 +360,9 @@ Then we verify:
OK
Notice that even though the object `index` was instantiated from the
standard library, we still have to verify it. Generally speaking, even
trusted modules have properties that need to be verified when instantiated in a particular environment.
standard library, IVy still verified it. Generally speaking, even
trusted modules have properties that need to be verified when
instantiated in a particular environment.
# Representation invariants
@ -363,12 +382,10 @@ Now let's try adding an action to our `set` module that removes an element:
object impl = {
...
implement remove {
if some (i:index.t) 0 <= i & i < arr.end(s) & arr.value(s,i) = e {
local last:index.t {
last := index.prev(arr.end(s));
s := arr.set(s,i,arr.get(s,last));
s := arr.resize(s,last,0)
}
if some (i:index.t) 0 <= i & i < repr(s).end & repr(s).value(i) = e {
var last := repr(s).end.prev;
repr(s) := repr(s).set(i,repr(s).get(last));
repr(s) := repr(s).resize(last,0)
}
}
}
@ -379,18 +396,20 @@ If such an `i` exists, the value `e` is removed by replacing it with the last va
in the array and then resizing the array to make it one element smaller.
Unfortunately, this implementation doesn't work: if the input array
contains two copies of the element `e`, one copy will remain. On
contains two copies of the element `e`, one copy will remain. One
solution to this problem is to use a *representation invariant*. This
is a predicate a predicate that must be true of a value for it to be a
valid representation. The representation invariant is assumed to be
true of input values and must hold of output values.
In the case of our sets, the representation invariant is that no value
occurs twice in the array:
occurs twice in the array. It is part of the interface, and like `contains`, its definition
is private:
function valid(X:t) = forall Y,Z. (0 <= Y & Y < arr.end(X) & 0 <= Z & Z < arr.end(X) & arr.value(X,Y) = arr.value(X,Z) -> Y = Z)
relation valid(X:t)
Now we have to specify our interface to make the appropriate assumptions and guarantees:
We have to specify our interface to make the appropriate assumptions and guarantees:
object spec = {
after emptyset {
@ -412,6 +431,15 @@ Now we have to specify our interface to make the appropriate assumptions and gua
}
}
We give the definition of `valid` in the implementation:
object impl = {
...
definition valid(X:t) =
forall Y,Z. (0 <= Y & Y < repr(X).end & 0 <= Z & Z < repr(X).end
& repr(X).value(Y) = repr(X).value(Z) -> Y = Z)
}
Now we can verify that our implementation of `remove` works (try
verifying [arrayset2.ivy](arrayset2.ivy)). There is a disadvantage to
this approach, however. Users of our `set` module now have to keep

Просмотреть файл

@ -512,7 +512,7 @@ class ObjectDecl(Decl):
def name(self):
return 'object'
def defines(self):
return [(c.relname,lineno(c)) for c in self.args]
return [(c.relname,lineno(c),ObjectDecl) for c in self.args]
# return []
lf_counter = 0
@ -679,7 +679,7 @@ class TypeDecl(Decl):
def name(self):
return 'type'
def defines(self):
return self.args[0].defines()
return [(n,l,TypeDecl) for n,l in self.args[0].defines()]
def static(self):
res = [a for a,b in self.args[0].defines()]
return res
@ -1282,11 +1282,11 @@ def variables_ast(ast):
if isinstance(ast,Variable):
yield ast
elif ast != None and not isinstance(ast,str):
if not hasattr(ast,'args'):
print ast
print type(ast)
if any(isinstance(c,list) for c in ast.args):
print "foo: " + repr(ast)
# if not hasattr(ast,'args'):
# print ast
# print type(ast)
# if any(isinstance(c,list) for c in ast.args):
# print "foo: " + repr(ast)
for arg in ast.args:
for x in variables_ast(arg):
yield x

Просмотреть файл

@ -151,8 +151,12 @@ def compile_field_reference_rec(symbol_name,args,top=False):
except cfrfail as err:
raise cfrfail(symbol_name if err.symbol_name in im.module.hierarchy else err.symbol_name)
sort = base.sort
sort_parent,sort_child = iu.parent_child_name(sort.name)
destr_name = iu.compose_names(sort_parent,child_name)
# trucky: we first look for the method as a child of the sort.
# if not found, we look for a sibling of the sort
destr_name = iu.compose_names(sort.name,child_name)
if top_context and destr_name not in ivy_logic.sig.symbols and destr_name not in top_context.actions:
sort_parent,sort_child = iu.parent_child_name(sort.name)
destr_name = iu.compose_names(sort_parent,child_name)
if top_context and destr_name in top_context.actions:
if not expr_context:
raise IvyError(None,'call to action {} not allowed outside an action'.format(destr_name))
@ -798,6 +802,8 @@ class IvyDomainSetup(IvyDeclInterp):
self.domain.updates.append(upd.compile())
def type(self,typedef):
# print "typedef {!r}".format(typedef)
if isinstance(typedef.name,ivy_ast.This):
raise IvyError(typedef,"'type this' is only allowed in an object")
self.domain.sort_order.append(typedef.name)
if isinstance(typedef,ivy_ast.GhostTypeDef):
self.domain.ghost_sorts.add(typedef.name)

Просмотреть файл

@ -43,7 +43,14 @@ def p_atype_symbol(p):
if not (iu.get_numeric_version() <= [1,4]):
def p_atype_atype_dot_symbol(p):
'atype : atype DOT SYMBOL'
p[0] = p[1] + '.' + p[3]
if isinstance(p[1],This):
p[0] = p[3]
else:
p[0] = p[1] + '.' + p[3]
def p_atype_this(p):
'atype : THIS'
p[0] = This()
p[0].lineno = get_lineno(p,1)
def p_var_variable(p):
'var : VARIABLE'

Просмотреть файл

@ -7,6 +7,7 @@ from ivy_actions import AssumeAction, AssertAction, EnsuresAction, SetAction, As
from ivy_lexer import *
import ivy_utils as iu
import copy
from collections import defaultdict
import ply.yacc as yacc
@ -166,7 +167,7 @@ def check_non_temporal(x):
class Ivy(object):
def __init__(self):
self.decls = []
self.defined = dict()
self.defined = defaultdict(list)
self.static = set()
self.modules = dict()
self.macros = dict()
@ -190,8 +191,21 @@ class Ivy(object):
self.actions[d.defines()] = d
def define(self,df):
if len(df) == 3:
name,lineno,cls = df
else:
name,lineno = df
cls = None
for olineno,ocls in self.defined[name]:
conflict = ((ocls is not ObjectDecl) if cls is TypeDecl
else (ocls is not TypeDecl) if cls is ObjectDecl else True)
if conflict:
report_error(Redefining(name,lineno,olineno))
self.defined[name].append((lineno,cls))
def define_type(self,df):
name,lineno = df
if name in self.defined:
if name in self.defined_types:
report_error(Redefining(name,lineno,self.defined[name]))
self.defined[name] = lineno
@ -690,17 +704,26 @@ def p_optghost_ghost(p):
'optghost : GHOST'
p[0] = True
def p_typesymbol_symbol(p):
'typesymbol : SYMBOL'
p[0] = p[1]
def p_typesymbol_this(p):
'typesymbol : THIS'
p[0] = This()
p[0].lineno = get_lineno(p,1)
def p_top_type_symbol(p):
'top : top optghost TYPE SYMBOL'
'top : top optghost TYPE typesymbol'
p[0] = p[1]
scnst = Atom(p[4])
scnst.lineno = get_lineno(p,4)
tdfn = (GhostTypeDef if p[2] else TypeDef)(scnst,UninterpretedSort())
tdfn.lineno = get_lineno(p,4)
tdfn.lineno = get_lineno(p,3)
p[0].declare(TypeDecl(tdfn))
def p_top_type_symbol_eq_sort(p):
'top : top optghost TYPE SYMBOL EQ sort'
'top : top optghost TYPE typesymbol EQ sort'
p[0] = p[1]
scnst = Atom(p[4])
scnst.lineno = get_lineno(p,4)