зеркало из https://github.com/microsoft/kafka.git
MINOR: JavaDoc improvements for RangeAssignor (#4079)
This commit is contained in:
Родитель
a9af5c7963
Коммит
4a274bc9fd
|
@ -26,17 +26,20 @@ import java.util.List;
|
|||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* The range assignor works on a per-topic basis. For each topic, we lay out the available partitions in numeric order
|
||||
* <p>The range assignor works on a per-topic basis. For each topic, we lay out the available partitions in numeric order
|
||||
* and the consumers in lexicographic order. We then divide the number of partitions by the total number of
|
||||
* consumers to determine the number of partitions to assign to each consumer. If it does not evenly
|
||||
* divide, then the first few consumers will have one extra partition.
|
||||
*
|
||||
* For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
|
||||
* resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.
|
||||
* <p>For example, suppose there are two consumers <code>C0</code> and <code>C1</code>, two topics <code>t0</code> and
|
||||
* <code>t1</code>, and each topic has 3 partitions, resulting in partitions <code>t0p0</code>, <code>t0p1</code>,
|
||||
* <code>t0p2</code>, <code>t1p0</code>, <code>t1p1</code>, and <code>t1p2</code>.
|
||||
*
|
||||
* The assignment will be:
|
||||
* C0: [t0p0, t0p1, t1p0, t1p1]
|
||||
* C1: [t0p2, t1p2]
|
||||
* <p>The assignment will be:
|
||||
* <ul>
|
||||
* <li><code>C0: [t0p0, t0p1, t1p0, t1p1]</code></li>
|
||||
* <li><code>C1: [t0p2, t1p2]</code></li>
|
||||
* </ul>
|
||||
*/
|
||||
public class RangeAssignor extends AbstractPartitionAssignor {
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ import org.apache.kafka.streams.processor.StateStore;
|
|||
import org.apache.kafka.streams.processor.TimestampExtractor;
|
||||
|
||||
/**
|
||||
* The {@code Transformer} interface for stateful mapping of an input record to zero, one, or multiple new output
|
||||
* The {@code Transformer} interface is for stateful mapping of an input record to zero, one, or multiple new output
|
||||
* records (both key and value type can be altered arbitrarily).
|
||||
* This is a stateful record-by-record operation, i.e, {@link #transform(Object, Object)} is invoked individually for
|
||||
* each record of a stream and can access and modify a state that is available beyond a single call of
|
||||
|
|
Загрузка…
Ссылка в новой задаче