landcover/DataLoader.py

273 строки
9.7 KiB
Python

import sys
import os
import time
import numpy as np
from enum import Enum
import fiona
import fiona.transform
import shapely
import shapely.geometry
import rasterio
import rasterio.mask
import rasterio.merge
import rasterio.warp
import rtree
import cv2
import pickle
import glob
import GeoTools
class GeoDataTypes(Enum):
NAIP = 1
NLCD = 2
LANDSAT_LEAFON = 3
LANDSAT_LEAFOFF = 4
BUILDINGS = 5
LANDCOVER = 6
# ------------------------------------------------------------------------------
# Le's methods for finding which NAIP tiles exist for a given "filename id"
#
# E.g. given "m_3907638_nw_18_1_20150815.mrf", find all files from other years that
# match "m_3907638_nw_18_1*"
#
# TODO: Make this lookup faster, currently O(n) where n is total number of tiles 100k-1000k
# ------------------------------------------------------------------------------
def naip2id(naip):
return '_'.join(naip.split('/')[-1].split('_')[:-1])
def get_naip_same_loc(naip):
if naip2id(naip) in naip_d:
return naip_d[naip2id(naip)]
return [naip,]
assert all([os.path.exists(fn) for fn in [
"data/list_all_naip.txt",
]])
naip_d = {}
fdid = open('data/list_all_naip.txt', 'r')
while True:
line = fdid.readline().strip()
if not line:
break
naipid = naip2id(line)
if naipid in naip_d:
naip_d[naipid] += [line,]
else:
naip_d[naipid] = [line,]
fdid.close()
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# Caleb's methods for finding which NAIP tiles are assosciated with an input extent
#
# TODO: Assume that the tile_index.dat file is already created, make a separate script
# for generating it
# ------------------------------------------------------------------------------
assert all([os.path.exists(fn) for fn in [
"data/tile_index.dat",
"data/tile_index.idx",
"data/tiles.p"
]])
TILES = pickle.load(open("data/tiles.p", "rb"))
def lookup_tile_by_geom(geom):
tile_index = rtree.index.Index("data/tile_index")
# Add some margin
#minx, miny, maxx, maxy = shape(geom).buffer(50).bounds
minx, miny, maxx, maxy = shapely.geometry.shape(geom).bounds
geom = shapely.geometry.mapping(shapely.geometry.box(minx, miny, maxx, maxy, ccw=True))
geom = shapely.geometry.shape(geom)
intersected_indices = list(tile_index.intersection(geom.bounds))
for idx in intersected_indices:
intersected_fn = TILES[idx][0]
intersected_geom = TILES[idx][1]
if intersected_geom.contains(geom):
return intersected_fn
if len(intersected_indices) > 0:
raise ValueError("Error, there are overlaps with tile index, but no tile completely contains selection")
else:
raise ValueError("No tile intersections")
# ------------------------------------------------------------------------------
def get_data_by_extent(naip_fn, extent, geo_data_type):
if geo_data_type == GeoDataTypes.NAIP:
fn = naip_fn
elif geo_data_type == GeoDataTypes.NLCD:
fn = naip_fn.replace("/esri-naip/", "/resampled-nlcd/")[:-4] + "_nlcd.tif"
elif geo_data_type == GeoDataTypes.LANDSAT_LEAFON:
fn = naip_fn.replace("/esri-naip/data/v1/", "/resampled-landsat8/data/leaf_on/")[:-4] + "_landsat.tif"
elif geo_data_type == GeoDataTypes.LANDSAT_LEAFOFF:
fn = naip_fn.replace("/esri-naip/data/v1/", "/resampled-landsat8/data/leaf_off/")[:-4] + "_landsat.tif"
elif geo_data_type == GeoDataTypes.BUILDINGS:
fn = naip_fn.replace("/esri-naip/", "/resampled-buildings/")[:-4] + "_building.tif"
elif geo_data_type == GeoDataTypes.LANDCOVER:
# TODO: Add existence check
fn = naip_fname.replace("/esri-naip/", "/resampled-lc/")[:-4] + "_lc.tif"
else:
raise ValueError("GeoDataType not recognized")
f = rasterio.open(fn, "r")
geom = GeoTools.extent_to_transformed_geom(extent, f.crs["init"])
pad_rad = 15 # TODO: this might need to be changed for much larger inputs
buffed_geom = shapely.geometry.shape(geom).buffer(pad_rad)
minx, miny, maxx, maxy = buffed_geom.bounds
geom = shapely.geometry.mapping(shapely.geometry.box(minx, miny, maxx, maxy, ccw=True))
out_image, out_transform = rasterio.mask.mask(f, [geom], crop=True)
src_crs = f.crs.copy()
f.close()
dst_crs = {"init": "EPSG:%s" % (extent["spatialReference"]["latestWkid"])}
dst_transform, width, height = rasterio.warp.calculate_default_transform(
src_crs,
dst_crs,
width=out_image.shape[2], height=out_image.shape[1],
left=buffed_geom.bounds[0],
bottom=buffed_geom.bounds[1],
right=buffed_geom.bounds[2],
top=buffed_geom.bounds[3],
resolution=1
)
dst_image = np.zeros((out_image.shape[0], height, width), np.uint8)
rasterio.warp.reproject(
source=out_image,
destination=dst_image,
src_transform=out_transform,
src_crs=src_crs,
dst_transform=dst_transform,
dst_crs=dst_crs,
resampling=rasterio.warp.Resampling.nearest
)
# Calculate the correct padding
w = extent["xmax"] - extent["xmin"]
padding = int(np.round((dst_image.shape[1] - w) / 2))
return dst_image, padding
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# Le's methods for predicting entire tile worth of data
#
# NOTE: I have not refactored these --Caleb
# ------------------------------------------------------------------------------
def naip_fn_to_pred_tile_fn(naip_fn):
return os.path.basename(naip_fn).split('.mrf')[0] + '_tilepred'
def find_tile_and_load_pred(centerp):
geom, naip_fn = center_to_tile_geom(centerp)
naip_key = naip_fn_to_pred_tile_fn(naip_fn)
fnames = []
usernames = []
for paths in glob.glob('img/*/{}_geotif.tif'.format(naip_key)):
fnames.append(paths[len('img/'):-len('_geotif.tif')])
usernames.append(os.path.basename(os.path.dirname(paths)))
return fnames, usernames
def find_tile_and_save_pred(centerp, tif_names, username):
datasets = [rasterio.open(fn, "r") for fn in tif_names[::-1]]
# Get geom and CRS
# Assumes the CRS of the tile is the same as the CRSes of patches
geom, naip_fn = center_to_tile_geom(centerp)
fid = rasterio.open(naip_fn, "r")
tile_crs = fid.crs.copy()
fid.close()
geom = fiona.transform.transform_geom("EPSG:3857", tile_crs["init"], geom)
# Merge all geospatial patches
tile, tile_transform = rasterio.merge.merge(datasets, shapely.geometry.shape(geom).bounds, nodata=0)
for fid in datasets:
fid.close()
# Save the resulting tile
if not os.path.exists('img/{}'.format(username)):
os.makedirs('img/{}'.format(username))
fname_tif = 'img/{}/{}_geotif.tif'.format(username, naip_fn_to_pred_tile_fn(naip_fn))
fid = rasterio.open(fname_tif, 'w', driver='GTiff',
width=tile.shape[2], height=tile.shape[1], count=tile.shape[0], dtype=np.uint8,
transform=tile_transform, crs=tile_crs, nodata=0)
for ch in range(tile.shape[0]):
fid.write(tile[ch, ...], ch+1)
fid.close()
# Get pngs in CRS EPSG3857 for display purpose
dst_CRS = "EPSG:3857"
png_tile_bounds = shapely.geometry.shape(geom).bounds
dest_transform, width, height = rasterio.warp.calculate_default_transform(
tile_crs, rasterio.crs.CRS({"init": dst_CRS}),
width=tile.shape[2], height=tile.shape[1],
left=png_tile_bounds[0], bottom=png_tile_bounds[1],
right=png_tile_bounds[2], top=png_tile_bounds[3])
tile_dest = np.zeros((tile.shape[0], height, width), np.uint8)
rasterio.warp.reproject(
source=tile,
destination=tile_dest,
src_transform=tile_transform,
src_crs=tile_crs,
dst_transform=dest_transform,
dst_crs=rasterio.crs.CRS({"init": dst_CRS}),
resampling=rasterio.warp.Resampling.nearest
)
tile_dest = np.swapaxes(tile_dest, 0, 1)
tile_dest = np.swapaxes(tile_dest, 1, 2)
mask = np.max(tile_dest, axis=2, keepdims=True) > 0
tile_dest = tile_dest.astype(np.float32) / 255.0
im_soft = np.round(255*pic(tile_dest, hard=False)).astype(np.uint8)
im_hard = np.round(255*pic(tile_dest, hard=True)).astype(np.uint8) * mask
fname_png = 'img/{}/{}_soft.png'.format(username, naip_fn_to_pred_tile_fn(naip_fn))
cv2.imwrite(fname_png, cv2.cvtColor(im_soft, cv2.COLOR_RGB2BGR))
fname_png = 'img/{}/{}_hard.png'.format(username, naip_fn_to_pred_tile_fn(naip_fn))
cv2.imwrite(fname_png, cv2.cvtColor(im_hard, cv2.COLOR_RGB2BGR))
return fname_tif
def center_to_tile_geom(centerp):
xctr = centerp["xcenter"]
yctr = centerp["ycenter"]
geom = {
"type": "Polygon",
"coordinates": [[(xctr-1, yctr-1), (xctr+1, yctr-1), (xctr+1, yctr+1), (xctr-1, yctr+1), (xctr-1, yctr-1)]]
}
# The map navigator uses EPSG:3857 and Caleb's indices use EPSG:4269
geom = fiona.transform.transform_geom("EPSG:3857", "EPSG:4269", geom)
geom = shapely.geometry.shape(geom)
tile_index = rtree.index.Index("data/tile_index")
intersected_indices = list(tile_index.intersection(geom.bounds))
for idx in intersected_indices:
intersected_fn = TILES[idx][0]
intersected_geom = TILES[idx][1]
geom = shapely.geometry.mapping(intersected_geom)
geom = fiona.transform.transform_geom("EPSG:4269", "EPSG:3857", geom)
return geom, intersected_fn
print('No tile intersecton')
return None, None
# ------------------------------------------------------------------------------