* update docker hub init

* replace personal account with maro-team

* update hello files for CIM

* update docker repository name

* update docker file name

* fix bugs in notebook, rectify docs

* fix doc build issue

* remove docs from playground; fix citibike lp example Event issue

* update the exampel for vector env

* update vector env example

* update README due to PR comments

* add link to playground above MARO installation in README

* fix some typos

Co-authored-by: Jinyu Wang <Wang.Jinyu@microsoft.com>
This commit is contained in:
Jinyu-W 2021-07-09 15:14:28 +08:00 коммит произвёл GitHub
Родитель dca9280b91
Коммит d94899777e
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
28 изменённых файлов: 359 добавлений и 375 удалений

2
.github/ISSUE_TEMPLATE/---bug-report.md поставляемый
Просмотреть файл

@ -38,7 +38,7 @@ Steps to reproduce the behavior:
- How you installed MARO (`pip`, `source`):
- OS (`Linux`, `Windows`, `macOS`):
- Python version (`3.6`, `3.7`):
- Docker image (e.g., arthursjiang/maro:cpu[5f36ed]):
- Docker image (e.g., maro2020/maro:latest):
- CPU/GPU:
- Any other relevant information:

2
.github/workflows/deploy_docker_image.yml поставляемый
Просмотреть файл

@ -30,7 +30,7 @@ jobs:
run: |
pip install -r ./maro/requirements.build.txt
cython ./maro/backends/backend.pyx ./maro/backends/np_backend.pyx ./maro/backends/raw_backend.pyx ./maro/backends/frame.pyx --cplus -3 -E NODES_MEMORY_LAYOUT=ONE_BLOCK -X embedsignature=True
cat ./maro/__misc__.py | grep __version__ | egrep -o [0-9].[0-9].[0-9,a-z]+ | { read version; docker build -f ./docker_files/cpu.play.df . -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:cpu -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:latest -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:cpu-$version; }
cat ./maro/__misc__.py | grep __version__ | egrep -o [0-9].[0-9].[0-9,a-z]+ | { read version; docker build -f ./docker_files/cpu.playground.df . -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:cpu -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:latest -t ${{ secrets.DOCKER_HUB_USERNAME }}/maro:cpu-$version; }
- name: Login docker hub
run: |

Просмотреть файл

@ -2,13 +2,13 @@
[![Platform](https://raw.githubusercontent.com/microsoft/maro/master/docs/source/images/badges/platform.svg)](https://pypi.org/project/pymaro/)
[![Python Versions](https://img.shields.io/pypi/pyversions/pymaro.svg?logo=python&logoColor=white)](https://pypi.org/project/pymaro/#files)
[![Code Size](https://img.shields.io/github/languages/code-size/microsoft/maro)](https://github.com/microsoft/maro)
[![Docker Size](https://img.shields.io/docker/image-size/arthursjiang/maro)](https://hub.docker.com/repository/docker/arthursjiang/maro/tags?page=1)
[![Docker Size](https://img.shields.io/docker/image-size/maro2020/maro)](https://hub.docker.com/repository/docker/maro2020/maro/tags?page=1)
[![Issues](https://img.shields.io/github/issues/microsoft/maro)](https://github.com/microsoft/maro/issues)
[![Pull Requests](https://img.shields.io/github/issues-pr/microsoft/maro)](https://github.com/microsoft/maro/pulls)
[![Dependencies](https://img.shields.io/librariesio/github/microsoft/maro)](https://libraries.io/pypi/pymaro)
[![test](https://github.com/microsoft/maro/workflows/test/badge.svg)](https://github.com/microsoft/maro/actions?query=workflow%3Atest)
[![build](https://github.com/microsoft/maro/workflows/build/badge.svg)](https://github.com/microsoft/maro/actions?query=workflow%3Abuild)
[![docker](https://github.com/microsoft/maro/workflows/docker/badge.svg)](https://hub.docker.com/repository/docker/arthursjiang/maro)
[![docker](https://github.com/microsoft/maro/workflows/docker/badge.svg)](https://hub.docker.com/repository/docker/maro2020/maro)
[![docs](https://readthedocs.org/projects/maro/badge/?version=latest)](https://maro.readthedocs.io/)
[![PypI Versions](https://img.shields.io/pypi/v/pymaro)](https://pypi.org/project/pymaro/#files)
[![Wheel](https://img.shields.io/pypi/wheel/pymaro)](https://pypi.org/project/pymaro/#files)
@ -23,8 +23,8 @@
[![Lint](https://github.com/microsoft/maro/workflows/lint/badge.svg)](https://github.com/microsoft/maro/actions?query=workflow%3Alint)
[![Coverage](https://img.shields.io/codecov/c/github/microsoft/maro)](https://codecov.io/gh/microsoft/maro)
[![Downloads](https://img.shields.io/pypi/dm/pymaro)](https://pypi.org/project/pymaro/#files)
[![Docker Pulls](https://img.shields.io/docker/pulls/arthursjiang/maro)](https://hub.docker.com/repository/docker/arthursjiang/maro)
[![Play with MARO](https://raw.githubusercontent.com/microsoft/maro/master/docs/source/images/badges/play_with_maro.svg)](https://hub.docker.com/r/arthursjiang/maro)
[![Docker Pulls](https://img.shields.io/docker/pulls/maro2020/maro)](https://hub.docker.com/repository/docker/maro2020/maro)
[![Play with MARO](https://raw.githubusercontent.com/microsoft/maro/master/docs/source/images/badges/play_with_maro.svg)](https://hub.docker.com/r/maro2020/maro)
# [![MARO LOGO](./docs/source/images/logo.svg)](https://maro.readthedocs.io/en/latest/)
@ -58,6 +58,8 @@ of user-defined functions for message auto-handling, cluster provision, and job
| `examples` | Showcase of MARO. |
| `notebooks` | MARO quick-start notebooks. |
*Try [MARO playground](#run-playground) to have a quick experience.*
## Install MARO from [PyPI](https://pypi.org/project/pymaro/#files)
*Notes: The CLI commands (including the visualization tool) are not included in pymaro package. To enable these support, you need to install from source.*
@ -185,14 +187,13 @@ maro inspector dashboard --source_path ./dump_data/YOUR_SNAPSHOT_DUMP_FOLDER
## Run Playground
- Pull from [Docker Hub](https://hub.docker.com/repository/registry-1.docker.io/arthursjiang/maro/tags?page=1)
- Pull from [Docker Hub](https://hub.docker.com/r/maro2020/playground)
```sh
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 arthursjiang/maro:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
```
- Build from source
@ -204,9 +205,8 @@ maro inspector dashboard --source_path ./dump_data/YOUR_SNAPSHOT_DUMP_FOLDER
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
```
- Windows
@ -217,9 +217,8 @@ maro inspector dashboard --source_path ./dump_data/YOUR_SNAPSHOT_DUMP_FOLDER
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
```
## Contributing

Просмотреть файл

@ -1,20 +1,8 @@
FROM python:3.6
FROM python:3.7
WORKDIR /maro_playground
# Setup notebook
ADD ./notebooks ./notebooks
RUN /usr/local/bin/python -m pip install --upgrade pip
RUN pip install -r ./notebooks/requirements.nb.txt
RUN jupyter contrib nbextension install --system
RUN jt -t onedork -fs 95 -altp -tfs 11 -nfs 115 -cellw 88% -T
# Install redis
RUN wget http://download.redis.io/releases/redis-6.0.6.tar.gz; tar xzf redis-6.0.6.tar.gz; cd redis-6.0.6; make
RUN rm redis-6.0.6.tar.gz
# Install others
# Install zsh and other packages for the terminal usage
RUN apt-get -o Acquire::Check-Valid-Until=false -o Acquire::Check-Date=false update
RUN apt-get install -y zsh
RUN apt-get install -y htop
@ -23,42 +11,36 @@ RUN wget https://github.com/robbyrussell/oh-my-zsh/raw/master/tools/install.sh -
RUN chsh -s `which zsh` && wget https://raw.githubusercontent.com/ArthurJiang/config/master/.zshrc -O ~/.zshrc
RUN apt-get install -y npm
RUN rm -rf /var/lib/apt/lists/*
# Install redis
RUN wget http://download.redis.io/releases/redis-6.0.6.tar.gz; tar xzf redis-6.0.6.tar.gz; cd redis-6.0.6; make
RUN rm redis-6.0.6.tar.gz
RUN npm install -g redis-commander
# Setup notebook
ADD ./notebooks ./notebooks
RUN /usr/local/bin/python -m pip install --upgrade pip
RUN pip install -r ./notebooks/requirements.nb.txt
RUN jupyter contrib nbextension install --system
RUN jt -t onedork -fs 95 -altp -tfs 11 -nfs 115 -cellw 88% -T
RUN rm ./notebooks/*.txt
RUN rm ./notebooks/*.sh
# Add examples
ADD ./examples ./examples
ADD ./examples/requirements.ex.txt ./examples/requirements.ex.txt
RUN pip install -r ./examples/requirements.ex.txt
RUN rm ./examples/requirements.ex.txt
# Add local docs
ADD ./docs ./docs
ADD ./maro ./maro
ADD setup.py setup.py
ADD ./scripts ./scripts
RUN bash scripts/install_maro.sh
RUN pip install -U -r ./docs/requirements.docs.txt
RUN cd docs; make html
RUN rm -rf ./maro
RUN rm setup.py
RUN rm -rf ./scripts
# Install MARO
RUN pip install pymaro
ENV PYTHONPATH ./
# Add run cmd
ADD ./scripts/run_playground.sh ./run.sh
# Add readme
# Add README
ADD ./playground.md ./README.md
# Clean
RUN rm ./notebooks/*.txt
RUN rm ./notebooks/*.sh
RUN rm -r ./docs/source
RUN rm ./docs/make.bat
RUN rm ./docs/Makefile
RUN rm ./docs/README.md
RUN rm ./docs/requirements.docs.txt
RUN rm -rf ./build
RUN rm -rf ./pymaro.egg-info
# Install maro
RUN pip install pymaro
# Start service
CMD ["/bin/bash", "./run.sh"]

Просмотреть файл

@ -76,4 +76,4 @@ This environment is driven by `real trip history data <https://s3.amazonaws.com/
.. note::
All related code snippets are supported in `maro playground <https://hub.docker.com/r/arthursjiang/maro>`_.
All related code snippets are supported in `maro playground <https://hub.docker.com/r/maro2020/playground>`_.

Просмотреть файл

@ -165,4 +165,4 @@ latest policies.
.. note::
All related code snippets are supported in `maro playground <https://hub.docker.com/r/arthursjiang/maro>`_.
All related code snippets are supported in `maro playground <https://hub.docker.com/r/maro2020/playground>`_.

Просмотреть файл

@ -32,45 +32,35 @@ Quick Start
.. code-block:: python
from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action
from maro.simulator.scenarios.cim.common import Action, ActionType, DecisionEvent
# Initialize an environment with a specific scenario, related topology.
# In Container Inventory Management, 1 tick means 1 day, here durations=100 means a length of 100 days
from random import randint
# Initialize an Env for cim scenario
env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0", start_tick=0, durations=100)
# Query environment summary, which includes business instances, intra-instance attributes, etc.
print(env.summary)
metrics: object = None
decision_event: DecisionEvent = None
is_done: bool = False
action: Action = None
for ep in range(2):
# Gym-like step function.
# Start the env with a None Action
metrics, decision_event, is_done = env.step(None)
while not is_done:
past_week_ticks = [
x for x in range(decision_event.tick - 7, decision_event.tick)
]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]
# Generate a random Action according to the action_scope in DecisionEvent
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0
# Query the snapshot list of the environment to get the information of
# the booking, empty container inventory, shortage of the decision port in the past week.
past_week_info = env.snapshot_list["ports"][
past_week_ticks : decision_port_idx : intr_port_infos
]
dummy_action = Action(
vessel_idx=decision_event.vessel_idx,
port_idx=decision_event.port_idx,
quantity=0
action = Action(
decision_event.vessel_idx,
decision_event.port_idx,
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD
)
# Drive environment with dummy action (no repositioning).
metrics, decision_event, is_done = env.step(dummy_action)
# Query environment business metrics at the end of an episode,
# it is your optimized object (usually includes multi-target).
print(f"ep: {ep}, environment metrics: {env.metrics}")
env.reset()
# Respond the environment with the generated Action
metrics, decision_event, is_done = env.step(action)
Contents
----------

Просмотреть файл

@ -2,16 +2,15 @@
Playground Docker Image
=======================
Pull from `Docker Hub <https://hub.docker.com/repository/registry-1.docker.io/arthursjiang/maro/tags?page=1>`_
Pull from `Docker Hub <https://hub.docker.com/repository/registry-1.docker.io/maro2020/playground/tags?page=1>`_
------------------------------------------------------------------------------------------------------------------
.. code-block:: sh
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 arthursjiang/maro:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
Run from Source
---------------
@ -25,9 +24,8 @@ Run from Source
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
* Windows
@ -38,9 +36,8 @@ Run from Source
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
Major Services in Playground
----------------------------
@ -54,15 +51,12 @@ Major Services in Playground
* - ``Redis Commander``
- Redis web GUI.
- http://127.0.0.1:40009
* - ``Read the Docs``
- Local host docs.
- http://127.0.0.1:40010
* - ``Jupyter Lab``
- Jupyter lab with MARO environment, examples, notebooks.
- http://127.0.0.1:40011
- http://127.0.0.1:40010
*(If you use other port mapping, remember to change the port number.)*
*(Remember to change ports if you use different ports mapping.)*
Major Materials in Root Folder
------------------------------
@ -78,4 +72,4 @@ Major Materials in Root Folder
- Quick-start tutorial.
*(Those not mentioned in the table can be ignored.)*
*(The ones not mentioned in this table can be ignored.)*

Просмотреть файл

@ -571,10 +571,8 @@ Once we get a ``DecisionEvent`` from the environment, we should respond with an
* **vessel_idx** (int): The id of the vessel/operation object of the port/agent.
* **port_idx** (int): The id of the port/agent that take this action.
* **quantity** (int): The sign of this value denotes different meanings:
* Positive quantity means discharging empty containers from vessel to port.
* Negative quantity means loading empty containers from port to vessel.
* **action_type** (ActionType): Whether to load or discharge empty containers in this action.
* **quantity** (int): The quantity of empty containers to be loaded/discharged.
Example
^^^^^^^
@ -583,62 +581,37 @@ Here we will show you a simple example of interaction with the environment in
random mode, we hope this could help you learn how to use the environment interfaces:
.. code-block:: python
from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action, DecisionEvent
from maro.simulator.scenarios.cim.common import Action, ActionType, DecisionEvent
import random
from random import randint
# Initialize an environment of CIM scenario, with a specific topology.
# In Container Inventory Management, 1 tick means 1 day, durations=100 here indicates a length of 100 days.
# Initialize an Env for cim scenario
env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0", start_tick=0, durations=100)
# Query for the environment summary, the business instances and intra-instance attributes
# will be listed in the output for your reference.
print(env.summary)
metrics: object = None
decision_event: DecisionEvent = None
is_done: bool = False
action: Action = None
num_episode = 2
for ep in range(num_episode):
# Gym-like step function.
# Start the env with a None Action
metrics, decision_event, is_done = env.step(None)
while not is_done:
past_week_ticks = [
x for x in range(decision_event.tick - 7, decision_event.tick)
]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]
# Generate a random Action according to the action_scope in DecisionEvent
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0
# Query the snapshot list of this environment to get the information of
# the booking, empty, shortage of the decision port in the past week.
past_week_info = env.snapshot_list["ports"][
past_week_ticks : decision_port_idx : intr_port_infos
]
# Generate a random Action according to the action_scope in DecisionEvent.
random_quantity = random.randint(
-decision_event.action_scope.load,
decision_event.action_scope.discharge
)
action = Action(
vessel_idx=decision_event.vessel_idx,
port_idx=decision_event.port_idx,
quantity=random_quantity
decision_event.vessel_idx,
decision_event.port_idx,
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD
)
# Drive the environment with the random action.
# Respond the environment with the generated Action
metrics, decision_event, is_done = env.step(action)
# Query for the environment business metrics at the end of each episode,
# it is usually users' optimized object in CIM scenario (usually includes multi-target).
print(f"ep: {ep}, environment metrics: {env.metrics}")
env.reset()
Jump to `this notebook <https://github.com/microsoft/maro/tree/master/notebooks/container_inventory_management/interact_with_environment.ipynb>`_
for a quick experience.

Просмотреть файл

@ -23,7 +23,7 @@ sys.path.insert(0, cim_example_path)
from common import CIMTrajectory, common_config
from dqn.config import agent_config, training_config
log_dir = join(cim_dqn_path, "logs")
log_dir = join(cim_dqn_path, "log")
makedirs(log_dir, exist_ok=True)

Просмотреть файл

@ -1,25 +1,19 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from random import seed, randint
from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action, ActionType
if __name__ == "__main__":
start_tick = 0
durations = 100 # 100 days
opts = dict()
"""
enable-dump-snapshot parameter means business_engine needs dump snapshot data before reset.
If you leave value to empty string, it will dump to current folder.
For getting dump data, please uncomment below line and specify dump destination folder.
"""
# Initialize an environment with a specific scenario, related topology.
env = Env(scenario="cim", topology="global_trade.22p_l0.1",
start_tick=start_tick, durations=durations)
env = Env(scenario="cim", topology="global_trade.22p_l0.1", start_tick=0, durations=100)
# To reset environmental data before starting a new experiment.
env.reset()
# Query environment summary, which includes business instances, intra-instance attributes, etc.
print(env.summary)
@ -28,25 +22,18 @@ if __name__ == "__main__":
metrics, decision_event, is_done = env.step(None)
while not is_done:
past_week_ticks = [x for x in range(
max(decision_event.tick - 7, 0), decision_event.tick)]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0
# Query the decision port booking, empty container inventory, shortage information in the past week
past_week_info = env.snapshot_list["ports"][past_week_ticks:
decision_port_idx:
intr_port_infos]
dummy_action = Action(
random_action = Action(
decision_event.vessel_idx,
decision_event.port_idx,
0,
ActionType.LOAD
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD
)
# Drive environment with dummy action (no repositioning)
metrics, decision_event, is_done = env.step(dummy_action)
metrics, decision_event, is_done = env.step(random_action)
# Query environment business metrics at the end of an episode,
# it is your optimized object (usually includes multi-target).

Просмотреть файл

@ -9,32 +9,25 @@ os.environ["MARO_STREAMIT_ENABLED"] = "true"
os.environ["MARO_STREAMIT_EXPERIMENT_NAME"] = "experiment_example"
from random import seed, randint
from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action, ActionType
from maro.simulator.scenarios.cim.common import Action, ActionScope, ActionType
from maro.streamit import streamit
if __name__ == "__main__":
start_tick = 0
durations = 100 # 100 days
seed(0)
NUM_EPISODE = 2
opts = dict()
with streamit:
"""
enable-dump-snapshot parameter means business_engine needs dump snapshot data before reset.
If you leave value to empty string, it will dump to current folder.
For getting dump data, please uncomment below line and specify dump destination folder.
"""
# Initialize an environment with a specific scenario, related topology.
env = Env(scenario="cim", topology="global_trade.22p_l0.1",
start_tick=start_tick, durations=durations, options=opts)
env = Env(scenario="cim", topology="global_trade.22p_l0.1", start_tick=0, durations=100)
# To reset environmental data before starting a new experiment.
env.reset()
# Query environment summary, which includes business instances, intra-instance attributes, etc.
print(env.summary)
for ep in range(2):
for ep in range(NUM_EPISODE):
# Tell streamit we are in a new episode.
streamit.episode(ep)
@ -42,25 +35,18 @@ if __name__ == "__main__":
metrics, decision_event, is_done = env.step(None)
while not is_done:
past_week_ticks = [x for x in range(
max(decision_event.tick - 7, 0), decision_event.tick)]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0
# Query the decision port booking, empty container inventory, shortage information in the past week
past_week_info = env.snapshot_list["ports"][past_week_ticks:
decision_port_idx:
intr_port_infos]
dummy_action = Action(
random_action = Action(
decision_event.vessel_idx,
decision_event.port_idx,
0,
ActionType.LOAD
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD
)
# Drive environment with dummy action (no repositioning)
metrics, decision_event, is_done = env.step(dummy_action)
metrics, decision_event, is_done = env.step(random_action)
# Query environment business metrics at the end of an episode,
# it is your optimized object (usually includes multi-target).

Просмотреть файл

@ -1,13 +1,15 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from random import seed, randint
from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action, ActionType
if __name__ == "__main__":
start_tick = 0
durations = 100 # 100 days
seed(0)
NUM_EPISODE = 2
opts = dict()
"""
@ -20,37 +22,29 @@ if __name__ == "__main__":
# Initialize an environment with a specific scenario, related topology.
env = Env(
scenario="cim", topology="global_trade.22p_l0.1",
start_tick=start_tick, durations=durations, options=opts
start_tick=0, durations=100, options=opts
)
# To reset environmental data before starting a new experiment.
env.reset()
# Query environment summary, which includes business instances, intra-instance attributes, etc.
print(env.summary)
for ep in range(2):
for ep in range(NUM_EPISODE):
# Gym-like step function.
metrics, decision_event, is_done = env.step(None)
while not is_done:
past_week_ticks = [x for x in range(
max(decision_event.tick - 7, 0), decision_event.tick)]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0
# Query the decision port booking, empty container inventory, shortage information in the past week
past_week_info = env.snapshot_list["ports"][past_week_ticks:
decision_port_idx:
intr_port_infos]
dummy_action = Action(
random_action = Action(
decision_event.vessel_idx,
decision_event.port_idx,
0,
ActionType.LOAD
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD
)
# Drive environment with dummy action (no repositioning)
metrics, decision_event, is_done = env.step(dummy_action)
metrics, decision_event, is_done = env.step(random_action)
# Query environment business metrics at the end of an episode,
# it is your optimized object (usually includes multi-target).

Просмотреть файл

Просмотреть файл

@ -0,0 +1 @@
PuLP==2.1

Просмотреть файл

@ -1,46 +1,66 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from maro.simulator.scenarios.cim.common import Action, DecisionEvent
from enum import Enum
from maro.simulator.scenarios.cim.common import Action, ActionType, DecisionEvent
from maro.vector_env import VectorEnv
class VectorEnvUsage(Enum):
PUSH_ONE_FORWARD = "push the first environment forward and left others behind"
PUSH_ALL_FORWARD = "push all environments forward together"
USAGE = VectorEnvUsage.PUSH_ONE_FORWARD
if __name__ == "__main__":
with VectorEnv(batch_num=4, scenario="cim", topology="toy.5p_ssddd_l0.0", durations=100) as env:
for ep in range(2):
print("current episode:", ep)
for USAGE in [VectorEnvUsage.PUSH_ONE_FORWARD, VectorEnvUsage.PUSH_ALL_FORWARD]:
print(f"******************************************************")
print(f"Mode: {USAGE} ({USAGE.value})")
intermediate_status_reported = False
metrics, decision_event, is_done = (None, None, False)
while not is_done:
action = None
# Usage:
# 1. Only push speicified (1st for this example) environment, leave others behind
# if decision_event:
# env0_dec: DecisionEvent = decision_event[0]
# # 1.1 After 1st environment is done, then others will push forward.
# if env0_dec:
# ss0 = env.snapshot_list["vessels"][env0_dec.tick:env0_dec.vessel_idx:"remaining_space"]
# action = {0: Action(env0_dec.vessel_idx, env0_dec.port_idx, -env0_dec.action_scope.load)}
# 2. Only pass action to 1st environment (give None to other environments),
# but keep pushing all the environment, until the end
if decision_event:
env0_dec: DecisionEvent = decision_event[0]
# Showcase: how to access information from snapshot list in vector env.
if env0_dec:
ss0 = env.snapshot_list["vessels"][env0_dec.tick:env0_dec.vessel_idx:"remaining_space"]
action = [None] * env.batch_number
# 1. Only push specified (1st for this example) environment, leave others behind.
if USAGE == VectorEnvUsage.PUSH_ONE_FORWARD and env0_dec:
# Only action for the 1st Env. After 1st environment is done, then others will push forward.
action = {
0: Action(
vessel_idx=env0_dec.vessel_idx,
port_idx=env0_dec.port_idx,
quantity=env0_dec.action_scope.load,
action_type=ActionType.LOAD
)
}
# with a list of action, will push all environment to next step
action[0] = Action(env0_dec.vessel_idx, env0_dec.port_idx, -env0_dec.action_scope.load)
# 2. Only pass action to 1st environment (give None to other environments),
# but keep pushing all the environment, until the end
elif USAGE == VectorEnvUsage.PUSH_ALL_FORWARD and env0_dec:
# With a list of action, will push all environment to next step.
action = [None] * env.batch_number
action[0] = Action(
vessel_idx=env0_dec.vessel_idx,
port_idx=env0_dec.port_idx,
quantity=env0_dec.action_scope.load,
action_type=ActionType.LOAD
)
metrics, decision_event, is_done = env.step(action)
print("Final tick for each environment:", env.tick)
print("Final frame index for each environment:", env.frame_index)
if not intermediate_status_reported and env.tick[0] >= 99:
print(f"When env 0 reach tick {env.tick[0]}, ticks for each environment: {env.tick}")
intermediate_status_reported = True
print(f"Final tick for each environment: {env.tick}")
print(f"Final frame index for each environment: {env.frame_index}")
env.reset()

Просмотреть файл

@ -11,7 +11,7 @@
.. image:: https://github.com/microsoft/maro/workflows/docker/badge.svg
:target: https://hub.docker.com/repository/docker/arthursjiang/maro
:target: https://hub.docker.com/repository/docker/maro2020/maro
:alt: docker
@ -180,15 +180,16 @@ Run Playground
*
Pull from `Docker Hub <https://hub.docker.com/repository/registry-1.docker.io/arthursjiang/maro/tags?page=1>`_
Pull from `Docker Hub <https://hub.docker.com/r/maro2020/playground>`_
.. code-block:: sh
docker pull maro2020/playground
.. code-block:: sh
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 arthursjiang/maro:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
*
Build from source
@ -204,9 +205,8 @@ Run Playground
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
*
Windows
@ -218,9 +218,8 @@ Run Playground
# Run playground container.
# Redis commander (GUI for redis) -> http://127.0.0.1:40009
# Local host docs -> http://127.0.0.1:40010
# Jupyter lab with maro -> http://127.0.0.1:40011
docker run -p 40009:40009 -p 40010:40010 -p 40011:40011 maro/playground:cpu
# Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground
Contributing
------------

Просмотреть файл

@ -77,13 +77,13 @@ def start_geo_vis(start: str, experiment_name: str, front_end_port: int, **kwarg
# Start front-end docker container.
exec_path = os.path.dirname(inspect.getfile(inspect.currentframe()))
os.system("docker pull meroychen/geo_front_service")
os.system("docker pull maro2020/geo_front_service")
os.system("docker stop geo-vis")
os.system("docker rm geo-vis")
if front_end_port is not None:
os.system(f"docker run -d -p {front_end_port}:8080 --name geo-vis meroychen/geo_front_service")
os.system(f"docker run -d -p {front_end_port}:8080 --name geo-vis maro2020/geo_front_service")
else:
os.system("docker run -d -p 8080:8080 --name geo-vis meroychen/geo_front_service")
os.system("docker run -d -p 8080:8080 --name geo-vis maro2020/geo_front_service")
back_end_path = f"{exec_path}/back_end/vis_app/app.py"
os.system(f"python {back_end_path}")

Просмотреть файл

@ -6,5 +6,6 @@ from .cascade_event import CascadeEvent
from .event_buffer import EventBuffer
from .event_state import EventState
from .maro_events import MaroEvents
from .typings import Event
__all__ = ["AtomEvent", "CascadeEvent", "EventBuffer", "EventState", "MaroEvents"]
__all__ = ["AtomEvent", "CascadeEvent", "Event", "EventBuffer", "EventState", "MaroEvents"]

Просмотреть файл

@ -25,10 +25,11 @@ class Action:
Args:
vessel_idx (int): Which vessel will take action.
port_idx (int): Which port will take action.
quantity (int): How many containers can be moved from vessel to port (negative in reverse).
action_type (ActionType): Whether the action is a Load or a Discharge.
quantity (int): How many containers are loaded/discharged in this Action.
"""
summary_key = ["port_idx", "vessel_idx", "quantity"]
summary_key = ["port_idx", "vessel_idx", "action_type", "quantity"]
def __init__(self, vessel_idx: int, port_idx: int, quantity: int, action_type: ActionType):
self.vessel_idx = vessel_idx

Просмотреть файл

@ -18,11 +18,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"12:03:56 | WARNING | \u001b[33mBinary data files for scenario: citi_bike topology: toy.3s_4t not found.\u001b[0m\n",
"12:03:56 | WARNING | \u001b[33mGenerating temp binary data file for scenario: citi_bike topology: toy.3s_4t pid: 129013. If you want to keep the data, please use MARO CLI command 'maro env data generate -s citi_bike -t toy.3s_4t' to generate the binary data files first.\u001b[0m\n",
"12:03:56 | INFO | \u001b[32mGenerating trip data for topology toy.3s_4t .\u001b[0m\n",
"12:03:57 | INFO | \u001b[32mBuilding binary data from ~/.maro/data/citi_bike/.source/.clean/toy.3s_4t/b37f36f2de334eb3/trips.csv to ~/.maro/data/citi_bike/.build/toy.3s_4t/b37f36f2de334eb3/trips.bin\u001b[0m\n",
"{'trip_requirements': 2156, 'bike_shortage': 1163, 'operation_number': 0}\n"
"{'trip_requirements': 2169, 'bike_shortage': 1199, 'operation_number': 0}\n"
]
}
],
@ -73,7 +69,7 @@
"output_type": "stream",
"text": [
"'The available scenarios in MARO:'\n",
"['cim', 'citi_bike']\n",
"['cim', 'citi_bike', 'vm_scheduling']\n",
"\n",
"'The predefined topologies in Citi Bike:'\n",
"['ny.201801',\n",
@ -144,17 +140,28 @@
"name": "stdout",
"output_type": "stream",
"text": [
"12:04:06 | WARNING | \u001b[33mBinary data files for scenario: citi_bike topology: toy.3s_4t not found.\u001b[0m\n",
"12:04:06 | WARNING | \u001b[33mGenerating temp binary data file for scenario: citi_bike topology: toy.3s_4t pid: 129013. If you want to keep the data, please use MARO CLI command 'maro env data generate -s citi_bike -t toy.3s_4t' to generate the binary data files first.\u001b[0m\n",
"12:04:06 | INFO | \u001b[32mGenerating trip data for topology toy.3s_4t .\u001b[0m\n",
"12:04:07 | INFO | \u001b[32mBuilding binary data from ~/.maro/data/citi_bike/.source/.clean/toy.3s_4t/0ad85988e84a43bd/trips.csv to ~/.maro/data/citi_bike/.build/toy.3s_4t/0ad85988e84a43bd/trips.bin\u001b[0m\n",
"The current tick: 0.\n",
"The current frame index: 0.\n",
"There are 3 agents in this Env.\n",
"There will be 48 snapshots in total.\n",
"\n",
"Env Summary:\n",
"{'node_detail': {'matrices': {'attributes': {'trips_adj': {'slots': 9,\n",
"{'event_payload': {'DeliverBike': ['from_station_idx',\n",
" 'to_station_idx',\n",
" 'number'],\n",
" 'RebalanceBike': ['station_idx',\n",
" 'tick',\n",
" 'frame_index',\n",
" 'type',\n",
" 'action_scope'],\n",
" 'RequireBike': ['timestamp',\n",
" 'durations',\n",
" 'src_station',\n",
" 'dest_station'],\n",
" 'ReturnBike': ['from_station_idx',\n",
" 'to_station_idx',\n",
" 'number']},\n",
" 'node_detail': {'matrices': {'attributes': {'trips_adj': {'slots': 9,\n",
" 'type': 'i'}},\n",
" 'number': 1},\n",
" 'stations': {'attributes': {'bikes': {'slots': 1, 'type': 'i'},\n",
@ -275,19 +282,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"12:04:16 | WARNING | \u001b[33mBinary data files for scenario: citi_bike topology: toy.3s_4t not found.\u001b[0m\n",
"12:04:16 | WARNING | \u001b[33mGenerating temp binary data file for scenario: citi_bike topology: toy.3s_4t pid: 129013. If you want to keep the data, please use MARO CLI command 'maro env data generate -s citi_bike -t toy.3s_4t' to generate the binary data files first.\u001b[0m\n",
"12:04:16 | INFO | \u001b[32mGenerating trip data for topology toy.3s_4t .\u001b[0m\n",
"12:04:17 | INFO | \u001b[32mBuilding binary data from ~/.maro/data/citi_bike/.source/.clean/toy.3s_4t/56e2ca55ba6d4881/trips.csv to ~/.maro/data/citi_bike/.build/toy.3s_4t/56e2ca55ba6d4881/trips.bin\u001b[0m\n",
"*************\n",
"DecisionEvent(tick=79, station_idx=1, type=DecisionType.Demand, action_scope={0: 0, 2: 0, 1: 30})\n",
"Action(from_station_idx=2, to_station_idx=1, number=0)\n",
"DecisionEvent {station_idx: 2, type: 'DecisionType.Demand', action_scope:{1: 0, 0: 0, 2: 30}}\n",
"Action {from_station_idx: 0, to_station_idx: '2', number:0}\n",
"*************\n",
"DecisionEvent(tick=799, station_idx=2, type=DecisionType.Demand, action_scope={0: 0, 1: 0, 2: 30})\n",
"Action(from_station_idx=1, to_station_idx=2, number=0)\n",
"DecisionEvent {station_idx: 0, type: 'DecisionType.Demand', action_scope:{2: 1, 1: 1, 0: 30}}\n",
"Action {from_station_idx: 1, to_station_idx: '0', number:0}\n",
"*************\n",
"DecisionEvent(tick=959, station_idx=2, type=DecisionType.Demand, action_scope={0: 1, 1: 1, 2: 30})\n",
"Action(from_station_idx=0, to_station_idx=2, number=0)\n"
"DecisionEvent {station_idx: 1, type: 'DecisionType.Demand', action_scope:{2: 0, 0: 0, 1: 29}}\n",
"Action {from_station_idx: 0, to_station_idx: '1', number:0}\n",
"*************\n",
"DecisionEvent {station_idx: 1, type: 'DecisionType.Demand', action_scope:{2: 0, 0: 0, 1: 29}}\n",
"Action {from_station_idx: 2, to_station_idx: '1', number:0}\n",
"*************\n",
"DecisionEvent {station_idx: 0, type: 'DecisionType.Demand', action_scope:{2: 1, 1: 0, 0: 30}}\n",
"Action {from_station_idx: 2, to_station_idx: '0', number:0}\n"
]
}
],
@ -316,10 +325,15 @@
" target_idx_dock_tuple_list = [\n",
" (k, v) for k, v in decision_event.action_scope.items() if k != decision_event.station_idx\n",
" ]\n",
" weights=[item[1] for item in target_idx_dock_tuple_list]\n",
" if sum(weights) == 0:\n",
" target_idx = random.choices(target_idx_dock_tuple_list)[0][0]\n",
" target_dock = 0\n",
" else:\n",
" # Randomly choose a target station weighted by the quantity of empty docks\n",
" target_idx, target_dock = random.choices(\n",
" target_idx_dock_tuple_list,\n",
" weights=[item[1] for item in target_idx_dock_tuple_list]\n",
" weights=weights\n",
" )[0]\n",
" # Generate the corresponding random Action\n",
" action = Action(\n",
@ -335,10 +349,15 @@
" target_idx_inventory_tuple_list = [\n",
" (k, v) for k, v in decision_event.action_scope.items() if k != decision_event.station_idx\n",
" ]\n",
" weights = [item[1] for item in target_idx_inventory_tuple_list]\n",
" if sum(weights) == 0:\n",
" target_idx = random.choices(target_idx_inventory_tuple_list)[0][0]\n",
" target_inventory = 0\n",
" else:\n",
" # Randomly choose a target station weighted by the bike inventory\n",
" target_idx, target_inventory = random.choices(\n",
" target_idx_inventory_tuple_list,\n",
" weights=[item[1] for item in target_idx_inventory_tuple_list]\n",
" weights=weights\n",
" )[0]\n",
" # Generate the corresponding random Action\n",
" action = Action(\n",
@ -385,10 +404,6 @@
"name": "stdout",
"output_type": "stream",
"text": [
"12:04:26 | WARNING | \u001b[33mBinary data files for scenario: citi_bike topology: toy.3s_4t not found.\u001b[0m\n",
"12:04:26 | WARNING | \u001b[33mGenerating temp binary data file for scenario: citi_bike topology: toy.3s_4t pid: 129013. If you want to keep the data, please use MARO CLI command 'maro env data generate -s citi_bike -t toy.3s_4t' to generate the binary data files first.\u001b[0m\n",
"12:04:26 | INFO | \u001b[32mGenerating trip data for topology toy.3s_4t .\u001b[0m\n",
"12:04:27 | INFO | \u001b[32mBuilding binary data from ~/.maro/data/citi_bike/.source/.clean/toy.3s_4t/278c7458875b4474/trips.csv to ~/.maro/data/citi_bike/.build/toy.3s_4t/278c7458875b4474/trips.bin\u001b[0m\n",
"{'matrices': {'attributes': {...}, 'number': 1},\n",
" 'stations': {'attributes': {...}, 'number': 3}}\n",
"\n",
@ -427,18 +442,14 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"12:04:35 | WARNING | \u001b[33mBinary data files for scenario: citi_bike topology: toy.3s_4t not found.\u001b[0m\n",
"12:04:35 | WARNING | \u001b[33mGenerating temp binary data file for scenario: citi_bike topology: toy.3s_4t pid: 129013. If you want to keep the data, please use MARO CLI command 'maro env data generate -s citi_bike -t toy.3s_4t' to generate the binary data files first.\u001b[0m\n",
"12:04:35 | INFO | \u001b[32mGenerating trip data for topology toy.3s_4t .\u001b[0m\n",
"12:04:36 | INFO | \u001b[32mBuilding binary data from ~/.maro/data/citi_bike/.source/.clean/toy.3s_4t/80aa59d9c58d4b5e/trips.csv to ~/.maro/data/citi_bike/.build/toy.3s_4t/80aa59d9c58d4b5e/trips.bin\u001b[0m\n",
"array([11., 0., 11., 15., 0., 15., 16., 0., 16., 16., 0., 16.],\n",
"array([15., 0., 15., 16., 0., 16., 16., 0., 16., 18., 0., 18.],\n",
" dtype=float32)\n"
]
}
@ -496,7 +507,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.7.0"
}
},
"nbformat": 4,

Просмотреть файл

@ -67,7 +67,7 @@
"output_type": "stream",
"text": [
"'The available scenarios in MARO:'\n",
"['cim', 'citi_bike']\n",
"['cim', 'citi_bike', 'vm_scheduling']\n",
"\n",
"'The predefined topologies in CIM:'\n",
"['global_trade.22p_l0.0',\n",
@ -147,7 +147,34 @@
"There will be 100 snapshots in total.\n",
"\n",
"Env Summary:\n",
"{'node_detail': {'matrices': {'attributes': {'full_on_ports': {'slots': 25,\n",
"{'event_payload': {'DISCHARGE_EMPTY': ['port_idx',\n",
" 'vessel_idx',\n",
" 'action_type',\n",
" 'quantity'],\n",
" 'DISCHARGE_FULL': ['vessel_idx',\n",
" 'port_idx',\n",
" 'from_port_idx',\n",
" 'quantity'],\n",
" 'LOAD_EMPTY': ['port_idx',\n",
" 'vessel_idx',\n",
" 'action_type',\n",
" 'quantity'],\n",
" 'LOAD_FULL': ['port_idx', 'vessel_idx'],\n",
" 'ORDER': ['tick',\n",
" 'src_port_idx',\n",
" 'dest_port_idx',\n",
" 'quantity'],\n",
" 'PENDING_DECISION': ['tick',\n",
" 'port_idx',\n",
" 'vessel_idx',\n",
" 'snapshot_list',\n",
" 'action_scope',\n",
" 'early_discharge'],\n",
" 'RETURN_EMPTY': ['port_idx', 'quantity'],\n",
" 'RETURN_FULL': ['src_port_idx', 'dest_port_idx', 'quantity'],\n",
" 'VESSEL_ARRIVAL': ['port_idx', 'vessel_idx'],\n",
" 'VESSEL_DEPARTURE': ['port_idx', 'vessel_idx']},\n",
" 'node_detail': {'matrices': {'attributes': {'full_on_ports': {'slots': 25,\n",
" 'type': 'i'},\n",
" 'full_on_vessels': {'slots': 30,\n",
" 'type': 'i'},\n",
@ -184,8 +211,12 @@
" 'type': 'i'},\n",
" 'future_stop_tick_list': {'slots': 3,\n",
" 'type': 'i'},\n",
" 'is_parking': {'slots': 1,\n",
" 'type': 'i2'},\n",
" 'last_loc_idx': {'slots': 1,\n",
" 'type': 'i'},\n",
" 'loc_port_idx': {'slots': 1,\n",
" 'type': 'i'},\n",
" 'next_loc_idx': {'slots': 1,\n",
" 'type': 'i'},\n",
" 'past_stop_list': {'slots': 4,\n",
@ -279,9 +310,8 @@
"- A valid `Action` instance, including:\n",
" - **vessel_idx**: (int) The id of the vessel/operation object of the port/agent;\n",
" - **port_idx**: (int) The id of the port/agent that take this action;\n",
" - **quantity**: (int) The sign of this value denotes different meanings:\n",
" - Positive quantity means unloading empty containers from vessel to port;\n",
" - Negative quantity means loading empty containers from port to vessel.\n",
" - **action_type**: (ActionType) Whether to load or discharge empty containers in this action;\n",
" - **quantity**: (int) The quantity of empty containers to be loaded/discharged.\n",
"\n",
"## Generate random actions based on the DecisionEvent\n",
"\n",
@ -298,19 +328,32 @@
"output_type": "stream",
"text": [
"*************\n",
"DecisionEvent(tick=14, port_idx=0, vessel_idx=5, action_scope=ActionScope(load=8856, discharge=1981))\n",
"Action(port_idx=0, vessel_idx=5, quantity=-2667)\n",
"DecisionEvent {port_idx: 4, vessel_idx: 5, action_scope: ActionScope {load: 6599, discharge: 0}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.LOAD', port_idx: 4, vessel_idx: 5, quantity: 1960}\n",
"*************\n",
"DecisionEvent(tick=21, port_idx=2, vessel_idx=1, action_scope=ActionScope(load=15997, discharge=3061))\n",
"Action(port_idx=2, vessel_idx=1, quantity=-11608)\n"
"DecisionEvent {port_idx: 1, vessel_idx: 3, action_scope: ActionScope {load: 0, discharge: 6027}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.DISCHARGE', port_idx: 1, vessel_idx: 3, quantity: 3396}\n",
"*************\n",
"DecisionEvent {port_idx: 3, vessel_idx: 2, action_scope: ActionScope {load: 4730, discharge: 14383}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.DISCHARGE', port_idx: 3, vessel_idx: 2, quantity: 10070}\n",
"*************\n",
"DecisionEvent {port_idx: 0, vessel_idx: 3, action_scope: ActionScope {load: 0, discharge: 2205}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.LOAD', port_idx: 0, vessel_idx: 3, quantity: 0}\n",
"*************\n",
"DecisionEvent {port_idx: 4, vessel_idx: 1, action_scope: ActionScope {load: 0, discharge: 14495}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.DISCHARGE', port_idx: 4, vessel_idx: 1, quantity: 8300}\n",
"*************\n",
"DecisionEvent {port_idx: 4, vessel_idx: 3, action_scope: ActionScope {load: 13824, discharge: 2205}, early_discharge: 0}\n",
"Action {action_type: 'ActionType.DISCHARGE', port_idx: 4, vessel_idx: 3, quantity: 841}\n"
]
}
],
"source": [
"from maro.simulator import Env\n",
"from maro.simulator.scenarios.cim.common import Action, DecisionEvent\n",
"from maro.simulator.scenarios.cim.common import Action, ActionType, DecisionEvent\n",
"\n",
"import random\n",
"from random import randint\n",
"\n",
"# Initialize an Env for cim scenario\n",
"env = Env(scenario=\"cim\", topology=\"toy.5p_ssddd_l0.0\", start_tick=0, durations=100)\n",
@ -325,14 +368,14 @@
"\n",
"while not is_done:\n",
" # Generate a random Action according to the action_scope in DecisionEvent\n",
" random_quantity = random.randint(\n",
" -decision_event.action_scope.load,\n",
" decision_event.action_scope.discharge\n",
" )\n",
" action_scope = decision_event.action_scope\n",
" to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0\n",
"\n",
" action = Action(\n",
" vessel_idx=decision_event.vessel_idx,\n",
" port_idx=decision_event.port_idx,\n",
" quantity=random_quantity\n",
" decision_event.vessel_idx,\n",
" decision_event.port_idx,\n",
" randint(0, action_scope.discharge if to_discharge else action_scope.load),\n",
" ActionType.DISCHARGE if to_discharge else ActionType.LOAD\n",
" )\n",
"\n",
" # Randomly sample some records to show in the output\n",
@ -458,10 +501,13 @@
}
],
"metadata": {
"interpreter": {
"hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90"
},
"kernelspec": {
"display_name": "Python 3.7.7 64-bit",
"display_name": "Python 3",
"language": "python",
"name": "python37764bita867a8fada044a15b631200655c7181c"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@ -473,7 +519,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
"version": "3.7.0"
}
},
"nbformat": 4,

Просмотреть файл

@ -1,18 +1,21 @@
# Playground
Playground provides a standalone MARO running environment, it also includes examples of some predefined scenarios and quick-start tutorial.
## Main service in playground
The playground provides a standalone MARO environment along with several predefined scenario examples and quick-start tutorials.
## Main service in the playground
| Service | Description | Host |
|-------------------|------------------------------------------------------------|----------------------------|
| `Redis Commander` | Redis Web GUI. | http://127.0.0.1:40009 |
| `Read the Docs` | Local host docs. | http://127.0.0.1:40010 |
| `Jupyter Lab` | Jupyter lab with MARO environment, examples, notebooks. | http://127.0.0.1:40011 |
*(Remember change ports, if you used different ports mapping.)*
| `Jupyter Lab` | Jupyter lab with MARO environment, examples, notebooks. | http://127.0.0.1:40010 |
## Major materials in root folder
*(Remember to change ports if you use different ports mapping.)*
## Major materials in the root folder
| Folder | Description |
|-------------------|--------------------------------------------|
| `examples` | Showcases of predefined scenarios. |
| `notebooks` | Quick-start tutorial. |
*(Others can be ignored, which aren't mentioned in the table.)*
*(The ones not mentioned in this table can be ignored.)*

Просмотреть файл

@ -5,4 +5,4 @@ chdir "%~dp0.."
call .\scripts\compile_cython.bat
docker build -f ./docker_files/cpu.play.df . -t maro/playground:cpu
docker build -f ./docker_files/cpu.playground.df . -t maro2020/playground

Просмотреть файл

@ -10,4 +10,4 @@ fi
bash ./scripts/compile_cython.sh
docker build -f ./docker_files/cpu.play.df . -t maro/playground:cpu
docker build -f ./docker_files/cpu.playground.df . -t maro2020/playground

Просмотреть файл

@ -5,8 +5,5 @@
./redis-6.0.6/src/redis-server --port 6379 &
redis-commander --port 40009 &
# Python 3.6
cd ./docs/_build/html; python -m http.server 40010 -b 0.0.0.0 &
# It's only for your play locally or in an internal network environment, so disable the token for convenience
cd ../../..; jupyter lab --port 40011 --allow-root --ip 0.0.0.0 --NotebookApp.token=''
jupyter lab --port 40010 --allow-root --ip 0.0.0.0 --NotebookApp.token=''

Просмотреть файл

@ -87,8 +87,8 @@ setup(
description="MARO Python Package",
long_description=readme,
long_description_content_type="text/x-rst",
author="Arthur Jiang",
author_email="shujia.jiang@microsoft.com",
author="MARO Team",
author_email="maro-team@microsoft.com",
url="https://github.com/microsoft/maro",
project_urls={
"Code": "https://github.com/microsoft/maro",