Merge branch 'master' of github.com:microsoft/metric-transfer.pytorch
This commit is contained in:
Коммит
01d0d646ba
39
README.md
39
README.md
|
@ -2,15 +2,6 @@
|
|||
|
||||
This repo contains the pytorch implementation for the semi-supervised learning paper [(arxiv)](https://arxiv.org/abs/1812.08781).
|
||||
|
||||
```latex
|
||||
@inproceedings{liu2018deep,
|
||||
title={Deep Metric Transfer for Label Propagation with Limited Annotated Data},
|
||||
author={Liu, Bin and Wu, Zhirong and Hu, Han and Lin, Stephen},
|
||||
journal={arXiv preprint arXiv:1812.08781},
|
||||
year={2018}
|
||||
}
|
||||
```
|
||||
|
||||
## Requirements
|
||||
|
||||
* Python3: Anaconda is recommended because it already contains a lot of packages:
|
||||
|
@ -23,9 +14,22 @@ This repo contains the pytorch implementation for the semi-supervised learning p
|
|||
- Enjoys the benefit of recent advances self-supervised learning.
|
||||
- We hope to draw more attention to unsupervised pretraining for other tasks.
|
||||
|
||||
## Main results
|
||||
|
||||
The test accuracy of our methods and the state-of-the-art methods on CIFAR10 dataset with different number of labeled data.
|
||||
|
||||
| <sub>Method</sub> | 50 | 100 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
|
||||
| :----------------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: |
|
||||
| <sub>PI-model</sub> | 27.36 | 37.20 | 47.07 | 56.30 | 63.70 | 76.50 | 84.17 | 87.30 |
|
||||
| <sub>Mean-Teacher</sub> | 29.66 | 36.60 | 45.49 | 57.20 | 65.00 | 79.00 | 84.38 | 87.50 |
|
||||
| <sub>VAT</sub> | 23.00 | 35.58 | 47.61 | 62.90 | 72.80 | **84.00** | **86.79** | **88.10** |
|
||||
| <sub>Pseudo-Label</sub> | 21.00 | 34.00 | 45.83 | 60.30 | 68.20 | 78.00 | 84.79 | 86.20 |
|
||||
| <sub>**Ours**</sub> | **56.34** | **63.53** | **71.26** | **74.77** | **79.38** | 82.34 | 84.52 | 87.48 |
|
||||
|
||||
|
||||
## Quick start
|
||||
|
||||
* Clone this repo: `git clone git@github.com:bl0/metric-transfer.pytorch.git && cd metric-transfer.pytorch`
|
||||
* Clone this repo: `git clone git@github.com:microsoft/metric-transfer.pytorch.git && cd metric-transfer.pytorch`
|
||||
|
||||
* Install pytorch and other packages listed in requirements
|
||||
|
||||
|
@ -125,9 +129,22 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
|
|||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
|
||||
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
||||
|
||||
## Citation
|
||||
|
||||
If you find this paper useful in your research, please consider citing:
|
||||
|
||||
```latex
|
||||
@inproceedings{liu2018deep,
|
||||
title={Deep Metric Transfer for Label Propagation with Limited Annotated Data},
|
||||
author={Liu, Bin and Wu, Zhirong and Hu, Han and Lin, Stephen},
|
||||
journal={arXiv preprint arXiv:1812.08781},
|
||||
year={2018}
|
||||
}
|
||||
```
|
||||
|
||||
## Contact
|
||||
|
||||
For any questions, please feel free to create a new issue or reach
|
||||
```
|
||||
Bin Liu: liubinthss@gmail.com
|
||||
```
|
||||
```
|
||||
|
|
Загрузка…
Ссылка в новой задаче