multiview-human-pose-estima.../lib/utils/vis.py

250 строки
8.5 KiB
Python

# ------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# Written by Chunyu Wang (chnuwa@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import torchvision
import cv2
import os
import matplotlib.pyplot as plt
from core.inference import get_max_preds
def save_batch_image_with_joints(batch_image,
batch_joints,
batch_joints_vis,
file_name,
nrow=8,
padding=2):
'''
batch_image: [batch_size, channel, height, width]
batch_joints: [batch_size, num_joints, 3],
batch_joints_vis: [batch_size, num_joints, 1],
}
'''
grid = torchvision.utils.make_grid(batch_image, nrow, padding, True)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
ndarr = ndarr.copy()
nmaps = batch_image.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height = int(batch_image.size(2) + padding)
width = int(batch_image.size(3) + padding)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
joints = batch_joints[k]
joints_vis = batch_joints_vis[k]
for joint, joint_vis in zip(joints, joints_vis):
joint[0] = x * width + padding + joint[0]
joint[1] = y * height + padding + joint[1]
if joint_vis[0]:
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 2,
[0, 255, 255], 2)
k = k + 1
cv2.imwrite(file_name, ndarr)
def save_batch_heatmaps(batch_image, batch_heatmaps, file_name, normalize=True):
'''
batch_image: [batch_size, channel, height, width]
batch_heatmaps: ['batch_size, num_joints, height, width]
file_name: saved file name
'''
if normalize:
batch_image = batch_image.clone()
min = float(batch_image.min())
max = float(batch_image.max())
batch_image.add_(-min).div_(max - min + 1e-5)
batch_size = batch_heatmaps.size(0)
num_joints = batch_heatmaps.size(1)
heatmap_height = batch_heatmaps.size(2)
heatmap_width = batch_heatmaps.size(3)
grid_image = np.zeros(
(batch_size * heatmap_height, (num_joints + 1) * heatmap_width, 3),
dtype=np.uint8)
preds, maxvals = get_max_preds(batch_heatmaps.detach().cpu().numpy())
for i in range(batch_size):
image = batch_image[i].mul(255)\
.clamp(0, 255)\
.byte()\
.permute(1, 2, 0)\
.cpu().numpy()
heatmaps = batch_heatmaps[i].mul(255)\
.clamp(0, 255)\
.byte()\
.cpu().numpy()
resized_image = cv2.resize(image,
(int(heatmap_width), int(heatmap_height)))
height_begin = heatmap_height * i
height_end = heatmap_height * (i + 1)
for j in range(num_joints):
cv2.circle(resized_image,
(int(preds[i][j][0]), int(preds[i][j][1])), 1,
[0, 0, 255], 1)
heatmap = heatmaps[j, :, :]
colored_heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
masked_image = colored_heatmap * 0.7 + resized_image * 0.3
cv2.circle(masked_image, (int(preds[i][j][0]), int(preds[i][j][1])),
1, [0, 0, 255], 1)
width_begin = heatmap_width * (j + 1)
width_end = heatmap_width * (j + 2)
grid_image[height_begin:height_end, width_begin:width_end, :] = \
masked_image
# grid_image[height_begin:height_end, width_begin:width_end, :] = \
# colored_heatmap*0.7 + resized_image*0.3
grid_image[height_begin:height_end, 0:heatmap_width, :] = resized_image
cv2.imwrite(file_name, grid_image)
def save_debug_images(config, input, meta, target, joints_pred, output, prefix):
if not config.DEBUG.DEBUG:
return
basename = os.path.basename(prefix)
dirname = os.path.dirname(prefix)
dirname1 = os.path.join(dirname, 'image_with_joints')
dirname2 = os.path.join(dirname, 'batch_heatmaps')
for dir in [dirname1, dirname2]:
if not os.path.exists(dir):
os.makedirs(dir)
prefix1 = os.path.join(dirname1, basename)
prefix2 = os.path.join(dirname2, basename)
if config.DEBUG.SAVE_BATCH_IMAGES_GT:
save_batch_image_with_joints(input, meta['joints_2d_transformed'],
meta['joints_vis'],
'{}_gt.jpg'.format(prefix1))
if config.DEBUG.SAVE_BATCH_IMAGES_PRED:
save_batch_image_with_joints(input, joints_pred, meta['joints_vis'],
'{}_pred.jpg'.format(prefix1))
if config.DEBUG.SAVE_HEATMAPS_GT:
save_batch_heatmaps(input, target, '{}_hm_gt.jpg'.format(prefix2))
if config.DEBUG.SAVE_HEATMAPS_PRED:
save_batch_heatmaps(input, output, '{}_hm_pred.jpg'.format(prefix2))
def visualize_aggre_weights(aggre_layer, input, output, meta):
batch_index = 0
images = []
heatmaps = []
pose = []
for _input, _output, _meta in zip(input, output, meta):
img = _input[batch_index].clone()
# normalize
min, max = float(img.min()), float(img.max())
img.add_(-min).div_(max - min + 1e-5)
images.append(
img.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy())
heatmaps.append(_output[batch_index].clone().cpu().numpy())
pose.append(_meta['joints'][batch_index].clone().cpu().numpy())
view1, view2 = cv2.resize(images[0], (80, 80)), cv2.resize(
images[1], (80, 80))
heat1, heat2 = heatmaps[0], heatmaps[1]
joint2 = pose[1]
weights = aggre_layer.aggre[0].weight.data.cpu().numpy()
for joint_index in range(joint2.shape[0]):
h2 = heat2[joint_index]
plt.figure()
plt.subplot(121)
plt.imshow(view2[:, :, ::-1])
plt.imshow(h2, alpha=0.5)
point = joint2[joint_index][:2] / 4
idx = int(h2.shape[0] * point[1] + point[0])
value = h2[int(point[1]), int(point[0])]
print(value)
new_map = value * weights[idx]
new_map = new_map.reshape(h2.shape)
new_map[new_map < 0] = 0
plt.subplot(122)
plt.imshow(view1[:, :, ::-1])
plt.imshow(new_map, alpha=0.5)
plt.show()
def vis_mid_heatmaps(images, heatmaps, finals, tar_idx, idx):
batch_index = 0
imgs = []
hmaps = []
for _img, _hmap in zip(images, heatmaps):
img = _img[batch_index].clone()
min, max = float(img.min()), float(img.max())
img.add_(-min).div_(max - min + 1e-5)
imgs.append(
img.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy())
hmaps.append(_hmap[batch_index].clone().mul(255).clamp(
0, 255).byte().cpu().numpy())
heat1_final = finals[batch_index].clone().mul(255).clamp(
0, 255).byte().cpu().numpy()
heat1 = hmaps[0]
heat1_transfer = hmaps[1] + hmaps[2] + hmaps[3]
h, w = heat1.shape[1:]
view = cv2.resize(imgs[tar_idx], (h, w))
heats_set = [heat1_final, heat1, heat1_transfer]
num_joints = heat1.shape[0]
grid_image = np.zeros((num_joints * h, 4 * w, 3), dtype=np.uint8)
for i in range(len(heats_set)):
map = heats_set[i]
for j in range(num_joints):
h = map[j]
colored_h = cv2.applyColorMap(h, cv2.COLORMAP_JET)
masked_img = colored_h * 0.7 + view * 0.3
height_begin = h * j
height_end = h * (j + 1)
width_begin = w * (i + 1)
width_end = w * (i + 2)
grid_image[height_begin:height_end, width_begin:
width_end, :] = masked_img
grid_image[height_begin:height_end, 0:w, :] = view
save_root = '/data/extra/haibo/testing_samples'
imgname = 'sample{:0>5}_view{}.jpg'.format(idx, tar_idx + 1)
file_name = os.path.join(save_root, imgname)
cv2.imwrite(file_name, grid_image)