зеркало из https://github.com/microsoft/muzic.git
[MuseCoco] Polish the document and fix potential problems
This commit is contained in:
Родитель
5b3890d2bb
Коммит
efa2d4c0bc
|
@ -25,6 +25,7 @@ def cut_by_random_1(num_bars, k, min_bar, max_bar, auto_k=True):
|
|||
r.add((begin, end))
|
||||
if auto_k:
|
||||
k = min(len(r), k)
|
||||
r = list(r)
|
||||
r = random.sample(r, k)
|
||||
return r
|
||||
|
||||
|
@ -40,6 +41,7 @@ def cut_by_random_2(num_bars, k, min_bar, max_bar, auto_k=True):
|
|||
r.add((0, num_bars))
|
||||
if auto_k:
|
||||
k = min(len(r), k)
|
||||
r = list(r)
|
||||
r = random.sample(r, k)
|
||||
return r
|
||||
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -25,8 +25,11 @@
|
|||
[2023.06.01] **We create the repository and release the [paper](https://arxiv.org/abs/2306.00110).** 🎉🎵
|
||||
# Environment
|
||||
```bash
|
||||
# Tested on Linux.
|
||||
conda create -n MuseCoco python=3.8
|
||||
pip install -r requirements.txt
|
||||
conda activate MuseCoco
|
||||
conda install pytorch=1.11.0 -c pytorch
|
||||
pip install -r requirements.txt # g++ should be installed to let this line work.
|
||||
```
|
||||
|
||||
# Attributes
|
||||
|
@ -56,10 +59,10 @@ The mapping between keywords used in the code and musical attributes:
|
|||
Switch to the `1-text2attribute_dataprepare` folder
|
||||
1. Attribute: We provide attributes of the standard test set in [text.bin](https://github.com/microsoft/muzic/tree/main/musecoco/1-text2attribute_dataprepare/test).
|
||||
2. Construct Text:
|
||||
```bash
|
||||
cd 1-text2attribute_dataprepare
|
||||
bash run.sh
|
||||
```
|
||||
```bash
|
||||
cd 1-text2attribute_dataprepare
|
||||
bash run.sh
|
||||
```
|
||||
1. Obtain attribute-text pairs (the input dataset for the text-to-attribute understanding model) including `att_key.json` and `test.json`.
|
||||
We have provided the off-the-shelf standard test set in the [folder](https://github.com/microsoft/muzic/tree/main/musecoco/1-text2attribute_model/data) too.
|
||||
### 2. Train the model
|
||||
|
@ -73,7 +76,7 @@ The checkpoint of the fine-tuned model and `num_labels.json` are obtained.
|
|||
## II. Attribute-to-Music Generation
|
||||
|
||||
### 1. Data processing
|
||||
Switch to the `2-attribute2music_dataprepare` folder. Then, run the following command to obtain the packed data.
|
||||
Switch to the `2-attribute2music_dataprepare` folder. Then, run the following command to obtain the packed data. Note that `path/to/the/folder/containing/midi/files` is the path where you store the MIDI files, and `path/to/save/the/dataset` is an arbitrary folder you designate to store the extracted data.
|
||||
|
||||
```bash
|
||||
python extract_data.py path/to/the/folder/containing/midi/files path/to/save/the/dataset
|
||||
|
@ -81,14 +84,9 @@ python extract_data.py path/to/the/folder/containing/midi/files path/to/save/the
|
|||
|
||||
**Note:** The tool can only automatically extract the objective attributes' values from MIDI files. If you want to insert values for the subjective attributes' values, please input it manually at L40-L42 in `extract_data.py`.
|
||||
|
||||
|
||||
|
||||
|
||||
Prepare `Token.bin, Token_index.json, RID.bin, RID_index.json` in folder `data/`. Then run the following command to process the data into `train, validation, test`.
|
||||
The above commend would tokenize the music and extract the attributes from the MIDI files, and then save the information in 4 files named `Token.bin`, `Token_index.json`, `RID.bin`, `RID_index.json` in your designated folder. Please move those files into `2-attribute2music_model/data`, and switch to `2-attribute2music_model/data_process`, then run the following command to process the data into `train, validation, test`.
|
||||
|
||||
```shell
|
||||
cd data_process
|
||||
|
||||
# The following script splits the midi corpus into "train.txt", "valid.txt" and "test.txt", using "5120" as the maximum length of the token sequence.
|
||||
python split_data.py
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# Text-to-Attribute Understanding
|
||||
torch==1.11.0
|
||||
transformers==4.26.0
|
||||
accelerate
|
||||
datasets
|
||||
|
|
Загрузка…
Ссылка в новой задаче