muzic/pdaugment/pdaugment.py

506 строки
17 KiB
Python
Executable File

#!/usr/bin/env python
# coding: utf-8
from ast import Index
import os
import math
import json
import sys
import numpy as np
import pickle
import pandas as pd
import librosa
import pyworld as pw
import soundfile as sf
import miditoolkit
import midiconvert as md
import random
import multiprocessing
import secrets
import string
# read metadata information of the libritts dataset
def read_meta_data(meta_data):
"""
@params
meta_data: using pd.read_csv to read csv file
@return
meta_datas: mapping list consists of wave_name, phone and new_phone.
"""
res = []
for index, row in meta_data.iterrows():
path = row["wav"]
wave_name = row["new_wav"]
phone = row["phone"]
new_phone = row["new_phone"]
res.append((path,wave_name,phone, new_phone))
return res
# convert pitch in frequency to midi number
def hz2midi(frequency):
"""
@params
frequency: pitch in frequency
@return
midi_number: pitch in midi number
"""
return (69 + 12 * math.log((frequency/440), 2))
def midi2hz(midi):
"""
@params
midi: midi data
@return
tar_fre: target frequency
"""
note, octave = md.number_to_note(midi)
tar_fre = fre['{}'.format(octave)]['{}'.format(note)]
return tar_fre
# determine the phone is vowel or not
def isVowel(phone):
"""
@params
phone: input phone
@return
boolean: the phone is vowel or not
"""
vowels = ['a', 'e', 'i', 'o', 'u', 'y']
for vowel in vowels:
if vowel in phone:
return True
return False
# convert midi to notes info
def midi2notes(midi_path):
"""
@params
midi_path: midi path of the item
@return
data: data is a tuple consists of the pitch, duration and interval information of the given midi file
"""
midi_obj = miditoolkit.midi.parser.MidiFile(midi_path)
data = []
notes = midi_obj.instruments[0].notes
mapping = midi_obj.get_tick_to_time_mapping()
for i in range(len(notes)):
note = notes[i]
st = mapping[note.start]
end = mapping[note.end]
if i != len(notes)-1:
note1 = notes[i+1]
next_st = mapping[note1.start]
else:
next_st = end
data.append((note.pitch, end-st, next_st-end))
return data
# extract syllables from wav
def get_syllables(wav_data, phone, new_phone):
"""
@params
wav_data: the mel attributes of the audio from pickle file
phone: original phone from meta_data.csv
new_phone: new phone from meta_data.csv
@return
syllables: syllable list consists of phoneme list and the start and end of the syllables
"""
syllables = []
result = []
word_phones = phone.split(" / ")
syllable_index = 0
for word in word_phones:
if "punc_" in word:
continue
temp_res = []
phones = word.split(" ")
for phone in phones:
if phone == "-":
result.append(temp_res)
temp_res = []
else:
temp_res.append(syllable_index)
syllable_index += 1
if temp_res != []:
result.append(temp_res)
new_phone_components = new_phone.split(" ")
phone_index = 0
for syllable in result:
if new_phone_components[phone_index] == "<BOS>":
phone_index += 1
elif new_phone_components[phone_index] == "sil":
wav_start = wav_data[phone_index]
wav_end = wav_data[phone_index + 1]
syllables.append(([new_phone_components[phone_index]], [(wav_start, wav_end)]))
phone_index += 1
single_syllable_phoneme_list = new_phone_components[phone_index : (phone_index + len(syllable))]
wav_mels = []
for delta in range(0, len(syllable)):
wav_start = wav_data[phone_index + delta]
wav_end = wav_data[phone_index + delta + 1]
wav_mels.append((wav_start, wav_end))
syllables.append((single_syllable_phoneme_list, wav_mels))
phone_index += len(syllable)
pass
return syllables
# Part 1: Determine the correspondence between notes and syllables (one-to-many or many-to-one) according to the duration of MIDI and speech.
def note_syllable_mapping(notes, syllables):
"""
Calculate the correspondence between notes and syllables
@params
notes: note list consists of pitch, duration and interval.
syllables: syllable list consists of phoneme list and the start and end of the syllables
@return
mappings: mapping list consists of note list, phoneme list, the start and end of the syllables and output rate of the wav.
"""
INTERVAL = 12.5
LOWWER_RATE = 0.5
UPPER_RATE = 2
mappings = []
syllable_index = 0
midi_note_index = 0
while syllable_index < len(syllables):
note = []
all_phonemes = []
all_wav_data = []
phoneme_list, wav_data = syllables[syllable_index]
all_phonemes += phoneme_list
all_wav_data += wav_data
wav_start = int(wav_data[0][0])
wav_end = int(wav_data[len(wav_data) - 1][1])
note.append(notes[midi_note_index])
output_rate = 1
curr_syllable_interval = wav_end*INTERVAL/1000 - wav_start*INTERVAL/1000
curr_note_interval = notes[midi_note_index][1]
syllable_flag = 0
midi_note_flag = 0
# mapping strategy
while True:
output_rate = curr_syllable_interval / curr_note_interval
if output_rate < LOWWER_RATE:
if midi_note_flag == 1:
output_rate = LOWWER_RATE
break
syllable_index += 1
syllable_flag = 1
if syllable_index >= len(syllables):
output_rate = LOWWER_RATE
break
phoneme_list, wav_data = syllables[syllable_index]
all_phonemes += phoneme_list
all_wav_data += wav_data
wav_end = int(wav_data[len(wav_data) - 1][1])
curr_syllable_interval = wav_end*INTERVAL/1000 - wav_start*INTERVAL/1000
elif output_rate > UPPER_RATE:
if syllable_flag == 1:
output_rate = UPPER_RATE
break
midi_note_index += 1
midi_note_flag = 1
note.append(notes[midi_note_index])
curr_note_interval += notes[midi_note_index][1]
else:
break
mappings.append((note, all_phonemes, all_wav_data, output_rate))
syllable_index += 1
midi_note_index += 1
pass
return mappings
pass
# Part 2: Adjust MIDI tonality according to the average pitch of speech.
def midi_key_shift(speech_mean_f0, mappings):
"""
MIDI as a whole is shifted based on the average F0 of Speech
@params
mappings: mapping list consists of note list, phoneme list, start and end.
speech_mean_pitch: the average pitch of speech. This average is the average of all the non-zero values.
@return
output_mappings: The list of mapping relations after overall toning consists of note list, phoneme list, start and end.
notes_mean_pitch: average pitch of notes in mapping
"""
# extract all pitches
tar_pitch_midi = []
for map in mappings:
for note in map[0]:
tar_pitch_midi.append(note[0])
speech_mean_f0_midi = hz2midi(speech_mean_f0)
notes_mean_pitch = round(sum(tar_pitch_midi)/len(tar_pitch_midi))
# transpose number
trans = notes_mean_pitch - speech_mean_f0_midi
output_mappings = []
# transpose the notes
for map in mappings:
# new empty tuple
n = []
for note in map[0]:
n.append((int(note[0]-trans), note[1], note[2]))
output_mappings.append((n, map[1], map[2], map[3]))
return output_mappings, notes_mean_pitch
# Part 3: Adjust pitch to get pitch-augmented wav.
def pitch_shift(mappings, ori_wav, fs, frame_period=12.5):
"""
Adjust the pitch according to the mapping
@params
mappings: mapping list from note_syllable_mapping
ori_wav: Raw wav data
fs: sampling rate
@return
output_wav: wav data after pitch shift
"""
# load files
x = ori_wav
x = x.astype(np.double)
_f0, t = pw.dio(x, fs, frame_period=frame_period) # raw pitch extractor
f0 = pw.stonemask(x, _f0, t, fs) # pitch refinement
sp = pw.cheaptrick(x, f0, t, fs) # extract smoothed spectrogram
ap = pw.d4c(x, f0, t, fs) # extract aperiodicity
y = f0 # for pitch adjusments
silent_mask = np.where(f0==0)[0]
i = 0
for map in mappings:
# editing pitch
# one-to-one
if len(map[0]) == 1:
for i in range(len(map[1])):
start_mel = map[2][i][0]
end_mel = map[2][i][1]
y[start_mel:end_mel] = midi2hz(map[0][0][0])
# many-to-one
# syllable structure:
# (consonant*)(vowel)(consonant*)
# syllable mapping rules:
# 1. all cosonants before vowel will be assigned to the first note
# 2. all the notes will having equal length based on the total mels vowel
# 3. all cosonants before vowel will be assigned to the last note
else:
vowel_mask = np.zeros(len(map[1]))
for i, phone in enumerate(map[1]):
if isVowel(phone):
vowel_mask[i] = 1
vowel_start = map[2][np.where(vowel_mask==1)[0][0]][0] # first vowel start mel
vowel_end = map[2][np.where(vowel_mask==1)[0][-1]][1] # last vowel end mel
# length of every note will be sum(vowel_mel_length)/len(vowel)
avg_len = (vowel_end - vowel_start) / len(map[0])
flag = 0 # phase of editing many-to-one
for i, mask in enumerate(vowel_mask):
if flag == 0 and mask == 1:
flag += 1
elif flag == 1 and mask == 0:
flag += 1
if flag == 0:
y[map[2][i][0]:map[2][i][1]] = midi2hz(map[0][0][0])
if flag == 1:
for k in range(len(map[0])):
y[int(vowel_start + k*avg_len):int(vowel_start + (k+1)*avg_len)] = midi2hz(map[0][k][0])
if flag == 2:
y[map[2][i][0]:map[2][i][1]] = midi2hz(map[0][-1][0])
# keeping silent mels silent
for sil in silent_mask:
y[sil] = 0
# finetune
female_like_sp = np.zeros_like(sp)
for f in range(female_like_sp.shape[1]):
female_like_sp[:, f] = sp[:, int(f/1.3)]
female_like = pw.synthesize(y, female_like_sp, ap, fs, frame_period=frame_period)
return female_like
# Part 4: Adjust duration to get duration-augmented wav.
def duration_change(mappings, ori_wav, sr):
"""
Adjust the pitch length according to the mapping
@params
mappings: mapping list from note_syllable_mapping
ori_wav: raw wav data
@return
output_wav: wav data after duration change
"""
INTERVAL = 12.5
relation_index = 0
secret_string = ''.join(secrets.choice(string.ascii_lowercase + string.ascii_uppercase + string.digits) for _ in range(12))
# adjust duration of each note
for mapping in mappings:
note, phoneme_list, wav_data, output_rate = mapping
wav_start = wav_data[0][0]
wav_end = wav_data[len(wav_data) - 1][1]
sf.write(secret_string + 'cut' + str(relation_index) + '.wav', ori_wav[int(wav_start*INTERVAL/1000*sr):int(wav_end*INTERVAL/1000*sr)], sr, 'PCM_24')
os.system("ffmpeg -loglevel quiet -n -i " + secret_string + 'cut' + str(relation_index) + '.wav' + " -filter:a " + "atempo=" + str(output_rate) + " " + secret_string + 'temp_cut' + str(relation_index) + '.wav')
relation_index += 1
pass
output_wav = []
for index in range(0, relation_index):
y, sr = librosa.load(secret_string + 'temp_cut' + str(index) + '.wav', sr)
output_wav = np.hstack((output_wav, y))
os.system("rm -rf " + secret_string + "*")
return output_wav
def main():
# metadata of libritts dataset
frame_period = 12.5
meta_data = pd.read_csv(metadata_dir)
meta_datas = read_meta_data(meta_data)
# process using multithreading
def worker(meta_data):
path, wave_name, phone, new_phone = meta_data
while True:
s_midi_path = random.choice(all_midi_path)
midi_path = midi_file_fir + s_midi_path
notes = midi2notes(midi_path)
if len(notes) > len(new_phone):
break
pass
s_midi_path = s_midi_path.split(".")[0]
try:
wav, sr = librosa.core.load(path, sr=None)
syllables = get_syllables(mel_data[wave_name], phone, new_phone)
# Part 1: Determine the correspondence between notes and syllables (one-to-many or many-to-one) according to the duration of MIDI and speech.
mappings = note_syllable_mapping(notes, syllables)
x = wav.astype(np.double)
_f0, t = pw.dio(x, sr, frame_period=frame_period) # raw pitch extractor
f0 = pw.stonemask(x, _f0, t, sr) # pitch refinement
nonz = np.nonzero(f0)
mean_f0 = 0
for index in nonz:
mean_f0 = mean_f0 + f0[index]
# Part 2: Adjust MIDI tonality according to the average pitch of speech.
speech_mean_pitch = sum(mean_f0)/len(mean_f0)
new_mappings, notes_mean_pitch = midi_key_shift(speech_mean_pitch, mappings)
# Part 3: Adjust pitch to get pitch-augmented wav.
pitch_wav = pitch_shift(new_mappings, wav, sr)
single_duration_wav = duration_change(new_mappings, wav, sr)
d_path = os.path.join(output_duration_dir, "/".join(path.split("/")[-4:]))
p_path = os.path.join(output_pitch_dir, "/".join(path.split("/")[-4:]))
pd_path = os.path.join(output_pdaugment_dir, "/".join(path.split("/")[-4:]))
if not os.path.exists(d_path):
os.makedirs(d_path)
if not os.path.exists(p_path):
os.makedirs(d_path)
if not os.path.exists(pd_path):
os.makedirs(d_path)
if not os.path.exists(os.path.join(output_duration_dir, "/".join(path.split("/")[-4:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt")):
os.system("cp " + os.path.join("/".join(path.split("/")[:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt") + " " + os.path.join(output_duration_dir, "/".join(path.split("/")[-4:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt"))
sf.write(d_path, single_duration_wav, sr, 'PCM_24')
sf.write(p_path, pitch_wav, sr, 'PCM_24')
# Part 4: Adjust duration to get duration-augmented wav.
duration_wav = duration_change(new_mappings, pitch_wav, sr)
sf.write(pd_path, duration_wav, sr, 'PCM_24')
except Exception:
return
def muli_task(N, tasks):
pool = multiprocessing.Pool(N)
pool.map(worker, tasks)
pool.close()
pool.join()
muli_task(number_of_threads, meta_datas)
if __name__ == '__main__':
pickle_path = "data/pickle/mel_splits.pickle"
frequency_json_file = 'utils/frequency.json'
metadata_dir = 'data/speech/phone/dev-clean_metadata.csv'
dataset_dir = "data/speech/wav/dev-clean"
midi_file_fir = "data/midis/processed/midi_6tracks"
output_duration_dir = "data/duration"
output_pitch_dir = "data/pitch"
output_pdaugment_dir = "data/pdaugment"
number_of_threads = 16
all_midi_path = []
try:
pickle_path = sys.argv[1]
frequency_json_file = sys.argv[2]
dataset_dir = sys.argv[3]
midi_file_fir = sys.argv[4]
metadata_dir = sys.argv[5]
output_duration_dir = sys.argv[6]
output_pitch_dir = sys.argv[7]
output_pdaugment_dir = sys.argv[8]
number_of_threads = int(sys.argv[9])
except IndexError:
print("Need eight command line parameters.")
# load metadata
with open(frequency_json_file) as f:
fre = json.load(f)
with open(pickle_path, "rb") as f:
mel_data = pickle.load(f)
for file in os.listdir("freemidi"):
if os.path.splitext(file)[1] == '.mid':
all_midi_path.append(file)
main()