
Run your solution in a NAV Container

~ 1 ~

E2E: Run your solution in a NAV Container
This is an end 2 end description on how to get your solution up running on Docker as a code customized
solution, enabling you to extend your solution with Extensions v2 and start gradually moving pieces of your
solution from a code customized solution to extensions v2.

Note: This description is a happy-path description. You might have other processes for taking your solution
from one version to another, creating deltas, importing deltas etc. Feel free to use those methods instead.

Contents
The soluton .. 2

Setup a development machine with docker .. 2

Install navcontainerhelper ... 2

Creating a CSIDE Development environment .. 3

Import your solution to your CSIDE environment ... 3

Export your solution as deltas ... 3

Remove the old CSIDE development environment ... 4

Create a “Tenerife” Development environment (with CSIDE) .. 4

Import deltas to the “Tenerife” development environment .. 5

“Fix” your solution ... 5

Install VS Code and the VSIX matching your container ... 6

Create an app depending on your code customized solution ... 6

Convert your code customized solution to an app ... 7

Export your app and tenant databases as .bacpac.. 7

Create a new local container based on .bacpac databases ... 7

Create a secure URLs for your .bacpac files .. 8

Running a container in Azure using Azure SQL.. 8

Run your solution in a NAV Container

~ 2 ~

The soluton
I have created a very simple solution, consisting of:

- A new field on the Customer table: “My Field”
- A Codeunit with a new function to multiply a text with a number
- A Run function in the Codeunit, which calls the function with the new field as a parameter
- Added this field to the Customer Card
- Added an action to the Customer Card to call the Codeunit

Number series used is 50100 and these 3 objects is saved as .fob based on NAV 2017 CU13 W1 in
c:\temp\mysolution.fob.

If you want to try out this solution, you might be able to download the solution here:
https://www.dropbox.com/s/mg6p7uut1szpncu/mysolution.fob?dl=0

Setup a development machine with docker
You need a development machine, which has docker installed. Follow the process below to install docker or
create an Azure Virtual machine which has docker pre-installed.

- Windows 10: https://docs.docker.com/docker-for-windows/install/
- Windows Server 2016: https://docs.docker.com/install/windows/docker-ee/
- Azure Virtual Machine: Create a Windows Server 2016 Datacenter – with containers

We recommend Windows Server 2016 for running docker.

Install navcontainerhelper
On your docker host computer, you need to install the latest version of the navcontainerhelper in
PowerShell. Version 0.2.7.0 or later is required.

Navcontainerhelper is available here: https://www.powershellgallery.com/packages/navcontainerhelper
and can be installed by starting PowerShell ISE and running:

install-module navcontainerhelper -force

If you already have navcontainerhelper installed, please use update-module to get the latest version.

Run your solution in a NAV Container

~ 3 ~

Creating a CSIDE Development environment
To setup a CSIDE development container for NAV 2017 CU13 W1, you can use this script:

$mylicense = "c:\temp\mylicense.flf"
$oldimagename = "microsoft/dynamics-nav:2017-cu13-w1"
$oldcontainer = "old"

if ($credential -eq $null -or $credential -eq
[System.Management.Automation.PSCredential]::Empty) {
 $credential = get-credential -UserName $env:USERNAME `
 -Message "Please enter your Windows credentials."
}

New-NavContainer -accept_eula `
 -containerName $oldcontainer `
 -auth Windows `
 -credential $credential `
 -includeCSide `
 -licensefile $mylicense `
 -imageName $oldimagename `
 -updateHosts

Note: You need to replace the path of the license file with the location of your partner license.

The script will create a container, which is running Windows Authentication with your docker host. The
container name is old and you will have a set of shortcuts on the desktop for launching Web Client, CSIDE,
Windows Client etc.

When starting the container of a given version the first time, new-navcontainer will export all objects of the
base app in order to be able to create deltas. This will take some time, but is needed later in the process.

Import your solution to your CSIDE environment
Running this script will import your solution to your CSIDE environment and compile the objects:

$mysolution = "c:\temp\mysolution.fob"
Import-ObjectsToNavContainer -containerName $oldcontainer `
 -objectsFile $mysolution

Compile-ObjectsInNavContainer -containerName $oldcontainer `
 -filter "modified=1"

Note: You need to replace the path of the solution file with the location of your .fob file.

Export your solution as deltas
Navcontainerhelper contains a function, which can export your modifications as Deltas, run this:

Export-ModifiedObjectsAsDeltas -containerName $oldcontainer -openFolder

The openFolder flag means that the script will open the folder containing the solution. You should see this:

Run your solution in a NAV Container

~ 4 ~

Inspect the files to see that they contain only your modifications.

Remove the old CSIDE development environment
If you are running Windows 10, containers will be using HyperV isolation, which means that they are pre-
allocating 4Gb memory for the container on startup. You might need to remove the old container before
starting a new.

Note: Please remember to copy the delta folder to another location before removing the container as
removing the container also removes the folder with data created by the container (including the delta
folder). I have copied the delta folder to c:\temp.

Use:

Remove-NavContainer $oldcontainer

To remove the old container.

Create a “Tenerife” Development environment (with CSIDE)
Run this script to create a container using the latest version of the Developer Preview.

$olddeltaFolder = "c:\temp\delta"
$newimagename = "microsoft/dynamics-nav:devpreview-finus"
$newcontainer = "new"
New-NavContainer -accept_eula `
 -containerName $newcontainer `
 -auth Windows `
 -credential $credential `
 -includeCSide `
 -licensefile $mylicense `
 -imageName $newimagename `
 -updateHosts `
 -multitenant `
 -enableSymbolLoading `
 -additionalParameters @("-v ${olddeltafolder}:c:\olddeltas")

The new container will also have shortcuts on the desktop for running the Web Client, CSIDE, Windows
Client etc.

Note: The enableSymbolLoading flag will allow you to run development in VS Code side by side with CSIDE
development.

Note: The additionalParameters parameter will share the folder containing the old deltas with the
container.

Run your solution in a NAV Container

~ 5 ~

Note: The container is setup for multitenancy in order to be able to export app and tenant databases as
bacpac later.

Note: After the container has started, it will display the URL with which you can download the .vsix file to
use for Visual Studio code, use this URL to download the .vsix file.

Files:
http://new:8080/al-0.14.17461.vsix

Import deltas to the “Tenerife” development environment
Run this script to import your deltas to the new container:

Import-DeltasToNavContainer -containerName $newcontainer -deltaFolder $olddeltaFolder

Compile-ObjectsInNavContainer -containerName $newcontainer `
 -filter "modified=1"

This will import your deltas and compile them.

“Fix” your solution
In my sample, I used NAV 2017 as base, meaning that ApplicationArea wasn’t set on the control and the
action on the page. Secondly, I also couldn’t mark my function in the Codeunit as [external].

Start CSIDE for the new container and fix these issues (use Ctrl+F4 on the function to mark it as external).

This topic is probably going to take much more time, when doing this on your own solution.

Run your solution in a NAV Container

~ 6 ~

Install VS Code and the VSIX matching your container
Install Visual Studio code following the process here: https://code.visualstudio.com/docs/setup/windows

Install the .vsix from the file you downloaded from the new container.

Create an app depending on your code customized solution
Use Ctrl+Shift+P and select AL: Go!

Create a project using Your own server.

Modify launch.json with these values:

"server": "http://new",
"serverInstance": "nav",
"authentication": "Windows",
"tenant": "default",
"startupObjectId": 22

Use Ctrl+Shift+P and select AL: Download Symbols

Modify the HelloWorld.al to

 trigger OnOpenPage();
 var
 mycodeunit: codeunit MyCodeunit;
 begin
 Message(mycodeunit.MyFunction('Hello ',5));
 end;

Note: You will have the symbols for your codeunit and function available to use in Extensions V2 due to the
enableSymbolLoading flag on the new container and the [external] flag on the function. You can now create
events in CSIDE and use it in Extensions v2.

You can now gradually move things from your main solution to extensions v2, refactoring the app while
going forward.

Run the solution using F5 and you should see:

Run your solution in a NAV Container

~ 7 ~

Convert your code customized solution to an app
Use this script to convert your solution to extensions v2

Convert-ModifiedObjectsToAl -containerName $newcontainer -startId 50110 -openFolder

This should create deltas using the new syntax and send this to the txt2al tool to convert the objects to AL
code.

Note: while writing this, it doesn’t create a page extension based on the page delta, we are investigating
why this is and fix it. The process should be the same though.

Export your app and tenant databases as .bacpac
Use this script to export your databases as .bacpac

Export-NavContainerDatabasesAsBacpac -containerName $newcontainer

You can specify a shared folder, to which the .bacpac files should be copied. If not, the .bacpac files will be
exported and the folder in which both files are placed will be displayed.

Copy the .bacpac files to another location (ex. c:\temp\bacpac)

Create a new local container based on .bacpac databases
Use this script to create a new local container using the exported .bacpac files as databases:

$bacpacFolder = "c:\temp\bacpac"
$localcontainer = "local"
New-NavContainer -accept_eula `
 -containerName $localcontainer `
 -auth Windows `
 -credential $credential `
 -includeCSide `

Run your solution in a NAV Container

~ 8 ~

 -licensefile $mylicense `
 -imageName $newimagename `
 -updateHosts `
 -multitenant `
 -enableSymbolLoading `
 -additionalParameters @("-v ${bacpacFolder}:c:\bacpac",
 "-e appbacpac=c:\bacpac\app.bacpac",
 "-e tenantbacpac=c:\bacpac\tenant.bacpac")

Note: The additionalParameters will share the folder in which the .bacpac files are and then set the
appbacpac and the tenantbacpac parameters to files available in the container.

Now you can go back to the VS Code solution, change launch.json to use http://local instead of http://new
as development server, download symbols and deploy your hello world solution to the new container.

Create a secure URLs for your .bacpac files
Follow the process described here: https://blogs.msdn.microsoft.com/freddyk/2017/02/26/create-a-
secure-url-to-a-file/ to upload your .bacpac files to a cloud storage and get secure URLs for the bacpacs.

I have uploaded the .bacpacs from this sample to Azure Storage and they can be downloaded here:

App Bacpac URL:
https://directionswe.blob.core.windows.net/bacpacs/my/app.bacpac?st=2018-03-
04T12%3A23%3A00Z&se=2020-01-01T12%3A23%3A00Z&sp=r&sv=2017-04-
17&sr=b&sig=hi73XivZr2Q5c7wORYUEJ8vRk71LOCOqW9qQyqDTy6o%3D

Tenant Bacpac URL:
https://directionswe.blob.core.windows.net/bacpacs/my/tenant.bacpac?st=2018-03-
04T04%3A23%3A00Z&se=2020-01-01T04%3A23%3A00Z&sp=r&sv=2017-04-
17&sr=b&sig=bs%2Fvxql1vkvS%2FjqYs82ryG2cCiVbS67oU2fMAjXvdwY%3D

Running a container in Azure using Azure SQL
Modify the contact email for Lets encrypt to your email and run this script to launch the Azure Portal with
parameters pre-populated with Docker image and bacpac uris for app and tenant:

$contactemailforletsencrypt = "<your email address>"
$appbacpacuri =
"https://directionswe.blob.core.windows.net/bacpacs/my/app.bacpac?st=2018-03-
04T12%3A23%3A00Z&se=2020-01-01T12%3A23%3A00Z&sp=r&sv=2017-04-
17&sr=b&sig=hi73XivZr2Q5c7wORYUEJ8vRk71LOCOqW9qQyqDTy6o%3D"
$tenantbacpacuri =
"https://directionswe.blob.core.windows.net/bacpacs/my/tenant.bacpac?st=2018-03-
04T04%3A23%3A00Z&se=2020-01-01T04%3A23%3A00Z&sp=r&sv=2017-04-
17&sr=b&sig=bs%2Fvxql1vkvS%2FjqYs82ryG2cCiVbS67oU2fMAjXvdwY%3D"
$url = 'http://aka.ms/getnavext?navdockerimage='+[uri]::EscapeDataString($newimagename)+
 '&appbacpacuri='+[Uri]::EscapeDataString($appbacpacuri)+
 '&tenantbacpacuri='+[Uri]::EscapeDataString($tenantbacpacuri)+
 '&sqlservertype=AzureSQL'+
 '&multitenant=Yes'+
 '&useletsencryptcertificate=Yes'+
 '&contactemailforletsencrypt='+[Uri]::EscapeDataString($contactemailforletsencrypt)
Start-Process $url

Note: using LetsEncrypt certificate for your Azure VM means that you do not have to install trust for a self
signed certificate on your development machine.

Specify resource group, VM name and password and press purchase to deploy an Azure VM running the
docker container using an Azure SQL database server with the two .bacpac files restored and used as app
and tenant.

In the portal, you can select SQLExpress in order to use SQL Express instead of Azure SQL.

Run your solution in a NAV Container

~ 9 ~

After spinning up the Azure VM, you can modify launch.json with the URL of your server and UserPassword
instead of windows. Example:

 "server": "https://<publicdnsname>",
 "serverInstance": "nav",
 "authentication": "UserPassword",
 "tenant": "default",

Now use Download Symbols, authenticate with the NAV username (default admin) and the password you
specified during Azure VM creation. Press F5 to deploy to your Azure development box.

