
NAV on Docker - 1 - Hands On Lab

Hands-On Lab: NAV on Docker
Who should complete this HOL?
This Hands-On Lab is designed to help you understand what Docker is and what NAV on Docker can do for you. After completing the HOL, you should be able to determine if
Docker and especially NAV on Docker is useful in your organization. The HOL will use the Workshop VMs as a foundation for the HOL to have a uniform platform for all.

When you have completed this HOL, you can find more info on the nav-docker project on github: http://www.github.com/microsoft/nav-docker. This is also the place you
should be filing issues and comments.

What is Docker?
If you are new to Docker and Containers, you might want to scan through this
document before heading into the workshop:

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

This should give you a better understanding of what Docker is.

For the remaining of the workshop, you will be going through some scenarios, using
Docker, on how to Deploy NAV. For completing these scenarios, you will need a
learning environment, which you can get using http://aka.ms/getnav if you are
completing the workshop at home.

When you connect to your learning environment, you are presented with a website,
which looks like the image on the right side. What you might not be aware is, that
when you are viewing this, you are already using Docker. This website is hosted on
an Azure Virtual Machine, but NAV is not installed on the VM. The VM is a Docker
host and NAV is running in a Container on the host.

Clicking the Connect link will download the .rdp file, which launches Remote
Desktop to the Workshop VM.

Note, that you can connect to the Docker host (the Azure Virtual Machine), but you will not and cannot connect to a remote desktop in the container itself. The Container is
based on WindowsServerCore, which has no UI, no desktop.

Connecting to the Workshop VM (the Docker host) will allow you to interact with the Docker Containers that are available on that machine by using various commands.

NAV on Docker - 2 - Hands On Lab

First thing we will do is to have a look at the Workshop VM desktop and what we can do with that.

Open your workshop landing page in a browser and press
the Connect button to connect to the remote desktop of
your workshop environment.
Use the credentials provided to login.

Command Prompt
The Command Prompt is the standard CMD.EXE running as
Administrator.
This prompt is primarily there for running Docker
commands or other executables.
We will be using the Command Prompt throughout this
Hands On Lab.

NAV on Docker - 3 - Hands On Lab

Nav Container Helper
The navcontainerhelper is a set of functions, which will
help you working with Nav Containers.

When you start the container helper, it will display a
number of the available functions.

Note that the navcontainerhelper is an open source
project from
http://www.github.com/microsoft/navcontainerhelper
and any issues regarding the navcontainerhelper should be
added under issues in the github repo.

We will dive into the container helper later.

NAV on Docker - 4 - Hands On Lab

navserver Command Prompt
The navserver Command Prompt is the standard CMD.EXE
running inside the navserver container.
When you run dir inside the navserver Command Prompt
you will see the Container file system. Folders that are
shared from the host to the container are shown as
symbolic directory links (SYMLINKD).
The file system inside the NAV Docker Image consists of a
few special folders/files:
c:\run the run folder is the folder containing all the scripts,
which are used to set up NAV in the container.
c:\run\my is the location, where you can place scripts
which can override functionality of the run folder. Typical
scenario is to share a folder from the host to the c:\run\my
folder, containing various scripts that you want executed
during start.
c:\run\start.ps1 is the entry point for the container.
c:\run\navstart.ps1 is the main script for setting up NAV
and launching other setup scripts.

navserver PowerShell Prompt
The navserver PowerShell Prompt is a PowerShell prompt
running inside the container.
All NAV cmdlets are loaded inside the PowerShell prompt,
ready to use.

Example:
Get-NavServerUser NAV

Will list all users in the NAV server instance (which is the
default server instance in the container).

Note that not all commands will work inside the container.
You cannot create a new server instance, for example –
that is done by spinning up another container (the Docker
way😊)

NAV on Docker - 5 - Hands On Lab

navserver CSIDE
C/SIDE a.k.a. the Classic Development Environment for the
navserver container.
Note that C/SIDE is not there to support all classic
development scenarios.
The primary reason for C/SIDE to be available is for the VS
Code developer to be able to see and browse through the
source of the base application.
Having said that, you can do the majority of classic
development scenarios in C/SIDE.

Note that when you start C/SIDE you will be running
Database Authentication and you have to login as SA and
use the Workshop VM password.

Server name is navserver\SQLEXPRESS and the database
name depends on which localization you are running.

navserver Web Client
Opens a browser with the Web client for the navserver
container. The Web client is installed inside the container
on IIS and the ports are exposed on the container and
published to the host.

Use the credentials provided to login.

NAV on Docker - 6 - Hands On Lab

navserver Windows Client
Opens the Windows client for the navservercontainer.

The Windows client is not installed on the Docker host
even though it looks like it.

The Docker host shares a folder to the container called
C:\Program Files (x86)\Microsoft Dynamics NAV – and
the container then copies the files from that folder to the
host.

This gives the best compatibility and allows the folder to
be overridden if deploying a new container.

Use the credentials provided to login.

You can also install the Windows client using ClickOnce.
There is a section about this later in the HOL.

Landing Page
The landing page was the starting point of your journey. You will find all info and links here necessary to connect and use the Workshop VM.

PowerShell ISE
PowerShell ISE running on the Docker host. This is every IT infrastructure gurus favorite tool and we will be using ISE throughout this Hands On Lab. The
NavContainerHelper is installed and ready to use in ISE.

Visual Studio Code
Visual Studio Code is used for AL development and is not used in this Hands On Lab.
When launching the Workshop VM, the AL Language extension from the landing page is preinstalled. If you deploy a new NAV Container, you will have to uninstall and
install a new AL Language extension.

NAV on Docker - 7 - Hands On Lab

Basic Docker commands
Let’s drill into some of the basic Docker commands to get a better understanding of what Docker is and how it works.

You can run these commands in PowerShell, but Docker is a simple Windows Executable and will run in a command prompt as well.

For simplicity reasons, we will use the Command Prompt.

Open the Command Prompt and write:

docker ps

This gives you a list of all the running Docker Containers on
your machine.

Take some time to Inspect the info:

- The container name is navserver.
- The container ID starts with 2ba149d6ad76.
- The container is based on the microsoft/dynamics-

nav:2018 image.
- Ports 443, 8080 and 7046-7049 are all exposed on

the Docker host, meaning you can access them
from outside (the internet).

- Ports 80, 1433 and 7045 are open for the host,
meaning that you can access them from the host.

You might wonder why the previous section says: “The
container ID starts with…”. The reason for this is, that the
ID really is a 64 digit globally unique hex identifier, but
most time you can refer to the ID by specifying the first
digits until your specification isn’t ambiguous.
You will get the full ID by typing:

docker ps --no-trunc

but if you only have one image you can identify it by
writing the first digit – here: 2

NAV on Docker - 8 - Hands On Lab

The next command to try is:

docker images

This gives you a list of all images available for you to run.
In this picture there are the 2 Microsoft base images:
Windows Server Core and Nano Server. Beside them, the
Microsoft Dynamics NAV 2018 image.

A Docker image is really a set of services installed in a box
(container) ready to run on demand.
A specific version of the NAV Docker image is a specific
version (incl. localization) of NAV installed in a Container
ready to run (ex. NAV 2017 CU7 DK).

The NAV Docker images are highly configurable and
customizable.

Docker images consists of layers.
Layers are shared between images if possible.
All NAV images are based on an image called

microsoft/dynamics-nav:generic

The generic image can also be used to run any version of
NAV 2013 and up if you have a DVD image. Try to run this
command:

docker pull microsoft/dynamics-nav:2018-dk

You should see that some layers already exists, and the
remaining layers are downloaded and extracted.

The extraction typically takes more time than the
downloading as the filesystem layer is applied to the
existing layers.

NAV on Docker - 9 - Hands On Lab

All shipped versions of NAV since NAV 2016RTM are available on the public docker hub, where you also can find the EULA and the supported tags:
https://hub.docker.com/r/microsoft/dynamics-nav/.

Under Tags, you will find a list of all the tags in the public repository. Docker images are constructed in layers. That means a Docker pull will only need to download those
layers that are different from already downloaded layers.

Docker image names are build up of 3 sections:
<registry>/<repository>:<tag>
<registry> can be a private registry (like navinsider.azurecr.io) or the public docker hub, using a single identifier (like microsoft).
<repository> is for all NAV images dynamics-nav
<tag> determines which NAV image to get.
The tag is build up by this syntax: [[version][cu]][localization]
All parts of the tag are optional and if you omit a part, you will get the latest (or w1 for the localization).
Parts are seperated by a dash if multiple parts are specified and all parts are specified using lower case characters.

Example of valid image names:
microsoft/dynamics-nav – gives you the latest cumulative update for the latest NAV version with the worldwide (W1) localization
microsoft/dynamics-nav:dk – gives you the latest cumulative update for the latest NAV version with the Danish (DK) localization
microsoft/dynamics-nav:2017-w1 – gives you the latest cumulative update for NAV 2017 with the worldwide localization
microsoft/dynamics-nav:2016-cu24 – gives you CU24 NAV 2016 with the worldwide localization
microsoft/dynamics-nav:2018-cu2-na – gives you the CU2 for NAV 2018 with the North American (NA) localization

The number of tags is pretty extensive, but you can build up any tag from the above syntax.
The devpreviews are special tags [devpreview][month][localization] – devpreview-february is the latest while writing and localization starts with fin (for financials)

Additionally all images are tagged with [buildnumber][localization], where buildnumber is the build number (e.g. 11.0.20348.0)
As a consequence, microsoft/dynamics-nav:11.0.20348.0-dk – gives you NAV 2018 CU2 with Danish localization.

NAV on Docker - 10 - Hands On Lab

Try:

docker pull microsoft/dynamics-nav:devpreview-findk

You will see, that the first ~18 layers already exists and
only a few layers will need to be downloaded.

The ~5 layers, which are downloaded is the difference
between the US localization and the DK localization, so
only this difference will have to be downloaded.

As you might have guessed by now – if US and DK includes
W1 (are built on top of W1), pulling W1 should not cause
any downloads. Try:

docker pull microsoft/dynamics-nav:devpreview

Indeed – nothing to download, all layers already exist.

NAV on Docker - 11 - Hands On Lab

Now, try to run another instance of the dynamics-nav
image you have available.

docker run microsoft/dynamics-nav:2018

As the error indicates, you will have to accept the End User
License Agreement before this container can start.

Use:

docker inspect --format='{{.Config.Labels.eula}}'
microsoft/dynamics-nav:2018

to get the URL for the legal documents for Microsoft
Dynamics NAV 2018.

Let’s run another instance of the image and accept the
EULA:

docker run -e accept_eula=Y microsoft/dynamics-
nav:2018

Press Ctrl+C in the command prompt to exit the container
and leave it running in the background.
Now, run:

docker ps

The command will show you two containers running.
Inspect the difference in names, ports etc.
Note that Docker automatically assigns a readable name
to the container if you don’t do so in the Docker run
statement.
The original container will have ports exposed on the host,
the new container will only have ports exposed on the
container.

NAV on Docker - 12 - Hands On Lab

The docker run command doesn’t terminate but will display the output from container directly on the console. The NAV images will, when running, display the output of
the event log, meaning that if you do not terminate the console, you will be seeing the event log output in the console.

You can terminate the docker run command by pressing Ctrl+C.
Note that the Container will keep running even if you terminate the console.

If you want to run a container without displaying the output, you can use -d (for deamon) in the docker run command.
You can always use docker logs <containerid> to display the output of the container.

Open the Web client in a browser. Ignore the certificate
warnings for the self-signed certificate.

Login with the credentials displayed from the docker run
command.

NAV on Docker - 13 - Hands On Lab

Now try to run

docker ps -a

which will show you all containers – running ones and
exited ones. If you did try to run a container earlier
without specifying the accept_eula=Y then you will have
an exited container in the list.
Remove the exited container using

docker rm <containerid>

If you want to remove a running container you either need
to stop it first or use the -f parameter:

docker rm <contianerid> -f

Now, let’s have a look at the running main container. Try

docker inspect navserver

to inspect settings, status, labels etc. on a container or an
image.

You will also find network settings etc. if you look through
the emitted JSON.

NAV on Docker - 14 - Hands On Lab

Use

docker stats

to get statistics from the currently running containers.

If you dislike the format of Docker stats (if you would like
the container name included) you can modify the output
by specifying a statsFormat property in the
c:\users\vmadmin\.docker\config.json file.

In VSCode, create a new file with this content:

{
 "statsFormat": "table {{.Name}}\t{{.CPUPerc}}"
}

And save it in c:\users\vmadmin\.docker\config.json.

Note you need to create the .docker folder in a command
prompt using md .docker

Now re-run

docker stats

and you will see the info requested.
You can also add a section for psFormat etc.

NAV on Docker - 15 - Hands On Lab

Use PowerShell ISE to modify files in the container
If you are new to Docker you might not yet be annoyed
over how cumbersome it is to modify files in the container.
You can connect using the PowerShell prompt or the
command prompt, but since the file system is remote and
you don’t have a UI, you cannot edit files using Notepad.

But…

You can use ISE – it just requires a small trick.
Open ISE and run

Enter-PSSession -ContainerId (docker ps --no-trunc -qf
"name=navserver")

Now you will enter a remote session in PowerShell (much
like the navserver PowerShell Prompt) and inside of this
you can use psEdit to edit files remotely without having to
share folders and copy back and forth.

PS. The navcontainerhelper introduces a function which is
called Enter-NavContainer <containername> which does
exactly this.

Note that psEdit is an ISE specific function and does NOT
work inside the navserver PowerShell Prompt.

NAV on Docker - 16 - Hands On Lab

Advanced parameters
When using Docker run with the NAV image, there are a lot of different parameters you can use. All NAV image specific parameters are specified as environment variables (-e
or –env).

There are a number of different parameters you can set
when running the NAV Container. This command uses
some of them:

docker run -e accept_eula=Y -e usessl=N -e
auth=Windows -e username=student -e
password=<password> --name test microsoft/dynamics-
nav:devpreview-finus

If you specify the password of your student user, then this
command will start NAV in a Container without SSL and
using Windows Authentication.

Note that this is a known hack, that you can use Windows
Authentication between two machines if they share the
same username and password.

Note that the Web client is now without SSL and if you
open it in a browser, you will find that you are logged
directly into NAV. Use:

docker rm test -f

to remove the container named test.

NAV on Docker - 17 - Hands On Lab

In the above example, test is the container name.
Most Docker commands take container ID or container
name as parameter.
The container name however is not added to the DNS
resolver and you cannot ping the container name.
In order to access the container using TCP or HTTP you
need to use the hostname.
The default hostname is the first 10 characters of the
container ID.
You can specify your own hostname using:

--hostname test

Docker will automatically maintain the IP address in the
DNS resolution for the hostname, locally on the host.

You can also specify a public DNS name, which is the
CNAME record, which points to your host if you are
exposing the container to the world using a trusted
certificate. PublicDnsName will default to the hostname.

-e publicDnsName=ws111.navdemo.net

If you do not use SSL, the publicDnsName is only used for
calculating properties like PublicWebBaseUrl,
PublicSoapBaseUrl etc. in the config file.

NAV on Docker - 18 - Hands On Lab

Using the navcontainerhelper
The navcontainerhelper is already installed on the workshop VM, but you can easily install it on your local box from the PowerShell Gallery using:

Install-module navcontainerhelper -force

Even though Docker is a command line executable, you
can use it in PowerShell like other executables and it does
have some advantages. For that, we have created the
navcontainerhelper, an open source project which is
supposed to make it easier to work with containers.

Create a folder called C:\TEST. Start PowerShell ISE, create
a new script and p aste in this line:

New-NavContainer -accept_eula -containerName
myserver -includeCSide

save it as C:\TEST\start.ps1 and run it.

By default, the New-NavContainer will create a container
running Windows Authentication, using the same image as
the navserver container. Please supply the Windows
Credentials of your workshop VM.

You should see an output, which is like the output on the
right here.

Note that first time you run a specific version and include
CSide, the container will automatically export all objects as
text (baseline for object handling functions). You can avoid
this by adding -doNotExportObjectsToText

You can press F5 again and again and the script will
automatically remove the old container and start a fresh,
this time without exporting objects.

Note that you will have a new set of shortcuts on the
desktop to connect to your myserver container.

PS C:\Users\freddyk> New-NavContainer -accept_eula -containerName myserver -includeCSide
-licenseFile C:\ProgramData\NavContainerHelper\license.flf
Creating Nav container myserver
Using image microsoft/dynamics-nav:2018
Using license file C:\ProgramData\NavContainerHelper\license.flf
NAV Version: 11.0.20783.0-w1
Generic Tag: 0.0.5.3
Creating container myserver from image microsoft/dynamics-nav:2018
Waiting for container myserver to be ready
Initializing...
Starting Container
Hostname is myserver
PublicDnsName is myserver
Using Windows Authentication
Starting Local SQL Server
Starting Internet Information Server
Modifying NAV Service Tier Config File with Instance Specific Settings
Starting NAV Service Tier
Using license file 'c:\run\my\license.flf'
Import NAV License
Creating DotNetCore NAV Web Server Instance
Creating http download site

NAV on Docker - 19 - Hands On Lab

Creating Windows user freddyk
Setting SA Password and enabling SA
Creating NAV user
Container IP Address: 172.19.145.138
Container Hostname : myserver
Container Dns Name : myserver
Web Client : http://myserver/NAV/
Dev. Server : http://myserver
Dev. ServerInstance : NAV

Files:
http://myserver:8080/al-0.12.17720.vsix

Initialization took 92 seconds
Ready for connections!
Reading CustomSettings.config from myserver
Creating Desktop Shortcuts for myserver
Export Objects to C:\ProgramData\NavContainerHelper\Extensions\Original-11.0.20783.0-
w1\objects.txt (container path)
Split C:\ProgramData\NavContainerHelper\Extensions\Original-11.0.20783.0-w1\objects.txt
to C:\ProgramData\NavContainerHelper\Extensions\Original-11.0.20783.0-w1 (
container paths)
Export Objects (new syntax) to C:\ProgramData\NavContainerHelper\Extensions\Original-
11.0.20783.0-w1-newsyntax\objects.txt (container path)
Split C:\ProgramData\NavContainerHelper\Extensions\Original-11.0.20783.0-w1-
newsyntax\objects.txt to C:\ProgramData\NavContainerHelper\Extensions\Original-11.0.20
783.0-w1-newsyntax (container paths)
Nav container myserver successfully created

You can use

help new-navcontainer

To list all parameters available in the new-navcontainer
function.

PS C:\Users\freddyk> help New-NavContainer

NAME
 New-NavContainer

SYNOPSIS
 Create or refresh a Nav container

SYNTAX
 New-NavContainer [-accept_eula] [-accept_outdated] [-containerName] <String> [[-
imageName] <String>] [[-navDvdPath] <String>] [[-navDvdCountry] <String>] [[-
 licenseFile] <String>] [[-Credential] <PSCredential>] [[-authenticationEMail]
<String>] [[-memoryLimit] <String>] [[-databaseServer] <String>] [[-databaseIns
 tance] <String>] [[-databaseName] <String>] [[-databaseCredential] <PSCredential>]
[[-shortcuts] <String>] [-updateHosts] [-useSSL] [-includeCSide] [-enableS
 ymbolLoading] [-doNotExportObjectsToText] [-alwaysPull] [-multitenant] [-
includeTestToolkit] [[-restart] <String>] [[-auth] <String>] [[-additionalParameters
] <String[]>] [[-myScripts] <String[]>] [<CommonParameters>]

DESCRIPTION
 Creates a new Nav container based on a Nav Docker Image
 Adds shortcut on the desktop for Web Client and Container PowerShell prompt

NAV on Docker - 20 - Hands On Lab

If you want to spin up a new container with, lets say NAV
2017, you can write:

New-NavContainer -accept_eula -containerName
nav2017 -imageName microsoft/dynamics-nav:2017 -
includeCSide -doNotExportObjectsToText

You will see, that the function automatically pulls the NAV
2017 CU12 W1 image and it will take some time to
complete the pull as most of the layers are changed.

The Generic Tag here is 0.0.5.2 (previous was 0.0.5.3)

Again you will find shortcuts on the desktop to connect to
your nav 2017 container.

...
b3eeb1f92259: Pull complete
95ca09a479f5: Pull complete
77c622d9410e: Pull complete
550c091a6a4b: Pull complete
c21730148ab6: Pull complete
25eb60f6a3a2: Pull complete
0b1c5b4248fd: Pull complete
5f0ae6248073: Pull complete
e36f63306277: Pull complete
b4ee766d2c06: Pull complete
bd446c382e13: Pull complete
f8fd5c75fab4: Pull complete
Digest: sha256:744004a466b6c3550d23c7794f562b4d9b049c0c07cbbe7fa43867aac8acf47f
Status: Downloaded newer image for microsoft/dynamics-nav:2017
Creating Nav container nav2017
Using image microsoft/dynamics-nav:2017
Using license file c:\ programdata\navcontainerhelper\license.flf
NAV Version: 10.0.18976.0-W1
Generic Tag: 0.0.5.2
Creating container nav2017 from image microsoft/dynamics-nav:2017
Waiting for container nav2017 to be ready, this shouldn't take more than a few minutes
Time: ½ 1 ½ 2
...Ready
Create Desktop Shortcuts for nav2017
Nav container nav2017 successfully created

Remove-NavContainer nav2017

Will clean up after your Nav 2017 container

PS C:\programdata\navcontainerhelper> Remove-NavContainer nav2017
Removing container nav2017
Removing Desktop Shortcuts for container nav2017
Successfully removed container nav2017

NAV on Docker - 21 - Hands On Lab

Using a different database server
Up until now, we have been using NAV in a Container with the database living inside the same container. That is convenient when doing demos, but frequently you probably
want to run the database on a different SQL Server or maybe even on Azure SQL.

The NAV on Docker images have full support for pointing out a different database server, instance, and name on the command line and if your containers are set up with gMSA
(Group Managed Service Accounts) and Windows Authentication this should be sufficient to connect.

If you haven’t setup gMSA (which is the case with the workshop VMs) you will have to also specify the databasecredentials.

The below script will create a new container ”myserver” running NAV and we’ll just reuse the first container ”navserver” as a database server. We could also use a new
container containing only SQL Server, but we’ll be faster this way.

Copy this script, paste it into PowerShell ISE, modify the
“<Password>” with the password for your Workshop VM
and run it.

$password = "Workshop4you!"
$securepassword = (ConvertTo-SecureString -String $password -AsPlainText -Force)
$cred = New-Object System.Management.Automation.PSCredential("student", $securepassword)
$dbcred = New-Object System.Management.Automation.PSCredential("sa", $securepassword)

New-NavContainer -accept_eula `
 -containerName myserver `
 -includeCSide `
 -doNotExportObjectsToText `
 -auth NavUserPassword `
 -Credential $cred `
 -databaseServer navserver `
 -databaseInstance SQLEXPRESS `
 -databaseName FinancialsUS `
 -databaseCredential $dbcred

The output from new-navcontainer should be something
like this.

You will see that the myserver container never starts the
local SQL Server, instead it changes the database
connection, and imports the encryption key for using a
foreign database connection.

Try to connect to the navserver Web client and the
myserver Web Client (on the Desktop) at the same time
and you will see, that they are using the same database.

Creating Nav container myserver
Using image microsoft/dynamics-nav:2018
NAV Version: 11.0.20783.0-w1
Generic Tag: 0.0.5.3
Creating container myserver from image microsoft/dynamics-nav:2018
Waiting for container myserver to be ready
Initializing...
Starting Container
Hostname is myserver
PublicDnsName is myserver
Using NavUserPassword Authentication
Starting Internet Information Server
Import Encryption Key
Creating Self Signed Certificate
Self Signed Certificate Thumbprint 1AEC13120919F358F0C9EBCE4BFC302A3857885D
Modifying NAV Service Tier Config File with Instance Specific Settings
Starting NAV Service Tier
Creating DotNetCore NAV Web Server Instance
Creating http download site
Creating Windows user student
Container IP Address: 172.19.147.98
Container Hostname : myserver

NAV on Docker - 22 - Hands On Lab

Container Dns Name : myserver
Web Client : http://myserver/NAV/
Dev. Server : http://myserver
Dev. ServerInstance : NAV

Files:
http://myserver:8080/al-0.12.17720.vsix

Initialization took 60 seconds
Ready for connections!
Reading CustomSettings.config from myserver
Creating Desktop Shortcuts for myserver
Nav container myserver successfully created

Running docker stats now reveals two containers and the
one running SQL Server and NAV uses more memory than
the one running NAV only.

NAV on Docker - 23 - Hands On Lab

Using the Object Handling Functions in navcontainerhelper
Open the Nav Container Helper prompt and run

New-NavContainer -accept_eula -containerName
myserver -includeCSide

To create a CSide development environment next to the
navserver container.

Use your Workshop VM credentials when asked for
credentials.

Navigate to the
C:\ProgramData\navcontainerhelper\Extensions folder
and examine the folders:

myserver is a folder with files specific for the myserver
container
navserver is a folder with files specific for the navserver
container
Original-11.0.20783.0-W1 contains all the base objects
for build 11.0.20783.0 (w1 version)
Original-11.0.20783.0-W1-newsyntax contains all the
base objects for build 11.0.20783.0 (w1 version) in new
syntax format (for txt2al)

The reason for these base object folders are for being
able to create deltas from changes in a container.

NAV on Docker - 24 - Hands On Lab

Start the myserver CSIDE client and modify a few
objects.

Please only create modifications which are allowed in
extensions v1.

Save your modifications and close the classic
development environment.

NAV on Docker - 25 - Hands On Lab

Run

Export-ModifiedObjectsAsDeltas -
containerName myserver -openfolder

PS C:\ProgramData\NavContainerHelper\Extensions> Export-ModifiedObjectsAsDeltas -containerName
myserver -openfolder
Export Objects with filter 'modified=Yes' to
C:\ProgramData\NavContainerHelper\Extensions\myserver\modified\objects.txt (container path)
Split C:\ProgramData\NavContainerHelper\Extensions\myserver\modified\objects.txt to
C:\ProgramData\NavContainerHelper\Extensions\myserver\modified (container path
s)
Copy original objects to C:\ProgramData\NavContainerHelper\Extensions\myserver\original for all
objects that are modified (container path)
Compare modified objects with original objects in
C:\ProgramData\NavContainerHelper\Extensions\myserver\original and create Deltas in
C:\ProgramData\NavContainerH
elper\Extensions\myserver\delta (container paths)
Rename new objects to .TXT
delta files created in C:\ProgramData\NavContainerHelper\Extensions\myserver\delta

You should see a folder being opened with TXT
files for new objects and DELTA files for
changed.

If you navigate to the parent folder, you will find
work folders for:

- original
- modified
- delta

Try also

Convert-ModifiedObjectsToAl -containerName
myserver -openFolder

PS C:\ProgramData\NavContainerHelper\Extensions> Convert-ModifiedObjectsToAl -containerName
myserver -openFolder
Export Objects with filter 'modified=Yes' (new syntax) to
C:\ProgramData\NavContainerHelper\Extensions\myserver\modified-newsyntax\objects.txt (container
path)
Split C:\ProgramData\NavContainerHelper\Extensions\myserver\modified-newsyntax\objects.txt to
C:\ProgramData\NavContainerHelper\Extensions\myserver\modified-newsy
ntax (container paths)
Copy original objects to C:\ProgramData\NavContainerHelper\Extensions\myserver\original-
newsyntax for all objects that are modified (container path)

NAV on Docker - 26 - Hands On Lab

Compare modified objects with original objects in
C:\ProgramData\NavContainerHelper\Extensions\myserver\original-newsyntax and create Deltas in
C:\ProgramData\Nav
ContainerHelper\Extensions\myserver\delta-newsyntax (container paths)
Rename new objects to .TXT
Converting files in C:\ProgramData\NavContainerHelper\Extensions\myserver\delta-newsyntax to .al
files in C:\ProgramData\NavContainerHelper\Extensions\myserver\al
-newsyntax with startId 50100 (container paths)
al files created in C:\ProgramData\NavContainerHelper\Extensions\myserver\al-newsyntax

Inspect other object handling functions,
especially import and compile functions.

NAV on Docker - 27 - Hands On Lab

Portainer.io
Portainer is a free GUI for maintaining your Docker environment.

Portainer doesn’t work with IE and Edge doesn’t run on
Windows Server 2016, so we need to download and install
Chrome on the Workshop VM from:

https://www.google.com/intl/en/chrome/browser/

Copy the PowerShell script, paste it into PowerShell ISE
and run it. The script will:
1. Reconfigure Docker deamon
2. Open port 2375 in the firewall
3. Create a Portainer directory
4. Get the IP address
5. Download and run the Portainer Docker image

'{
 "hosts": ["tcp://0.0.0.0:2375", "npipe://"]
}' | Set-Content "C:\ProgramData\docker\config\daemon.json"
restart-service docker

netsh advfirewall firewall add rule name="Docker" dir=in action=allow protocol=TCP localport=2375

new-item -Path "C:\Portainer" -ItemType Directory
$ipAddress = (get-netadapter | Select-Object -First 1 | get-netipaddress | ? addressfamily -eq
'IPv4').ipaddress

docker run -d -v C:\Portainer:C:\data --name portainer --hostname portainer portainer/portainer -H
tcp://${ipAddress}:2375

Open Google Chrome and navigate to

http://portainer:9000

On your first connection, you will have to create an admin
password for Portainer.

After that…

Welcome to a free tool for maintaining your Docker
environment

