Merge branch 'hlu/update_entailment_notebook_to_use_transformers' of https://github.com/Microsoft/NLP into hlu/update_entailment_notebook_to_use_transformers

This commit is contained in:
hlums 2019-11-15 03:13:15 +00:00
Родитель dab0f019c8 697e0abee3
Коммит 6301686f52
4 изменённых файлов: 129 добавлений и 280 удалений

Просмотреть файл

@ -22,24 +22,16 @@
"source": [
"# Before You Start\n",
"\n",
"The running time shown in this notebook is running bert-large-cased on a Standard_NC24rs_v3 Azure Deep Learning Virtual Machine with 4 NVIDIA Tesla V100 GPUs. \n",
"It takes about 4 hours to fine-tune the `bert-large-cased` model on a Standard_NC24rs_v3 Azure Data Science Virtual Machine with 4 NVIDIA Tesla V100 GPUs. \n",
"> **Tip:** If you want to run through the notebook quickly, you can set the **`QUICK_RUN`** flag in the cell below to **`True`** to run the notebook on a small subset of the data and a smaller number of epochs. \n",
"\n",
"The table below provides some reference running time on different machine configurations. \n",
"\n",
"|QUICK_RUN|Machine Configurations|Running time|\n",
"|:---------|:----------------------|:------------|\n",
"|True|4 **CPU**s, 14GB memory| ~ 15 minutes|\n",
"|True|1 NVIDIA Tesla K80 GPUs, 12GB GPU memory| ~ 5 minutes|\n",
"|False|1 NVIDIA Tesla K80 GPUs, 12GB GPU memory| ~ 10.5 hours|\n",
"|False|4 NVIDIA Tesla V100 GPUs, 64GB GPU memory| ~ 2.5 hours|\n",
"\n",
"If you run into CUDA out-of-memory error, try reducing the `BATCH_SIZE` and `MAX_SEQ_LENGTH`, but note that model performance will be compromised. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -56,31 +48,24 @@
"To classify a sentence pair, we concatenate the tokens in both sentences and separate the sentences by the special [SEP] token. A [CLS] token is prepended to the token list and used as the aggregate sequence representation for the classification task.The NLI task essentially becomes a sequence classification task. For example, the figure below shows how [BERT](https://arxiv.org/abs/1810.04805) classifies sentence pairs. \n",
"<img src=\"https://nlpbp.blob.core.windows.net/images/bert_two_sentence.PNG\">\n",
"\n",
"We compare the training time and performance of three models: bert-base-cased, bert-large-cased, and xlnet-large-cased. The model used can be set in the **Configurations** section. "
"We compare the training time and performance of bert-large-cased and xlnet-large-cased. The model used can be set in the **Configurations** section. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1110 19:13:59.935610 140117887072000 file_utils.py:39] PyTorch version 1.2.0 available.\n",
"I1110 19:13:59.978967 140117887072000 modeling_xlnet.py:194] Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .\n"
]
}
],
"outputs": [],
"source": [
"import sys, os\n",
"nlp_path = os.path.abspath('../../')\n",
"if nlp_path not in sys.path:\n",
" sys.path.insert(0, nlp_path)\n",
" \n",
"\n",
"import scrapbook as sb\n",
"\n",
"from tempfile import TemporaryDirectory\n",
"\n",
"import numpy as np\n",
@ -104,39 +89,9 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['bert-base-uncased',\n",
" 'bert-large-uncased',\n",
" 'bert-base-cased',\n",
" 'bert-large-cased',\n",
" 'bert-base-multilingual-uncased',\n",
" 'bert-base-multilingual-cased',\n",
" 'bert-base-chinese',\n",
" 'bert-base-german-cased',\n",
" 'bert-large-uncased-whole-word-masking',\n",
" 'bert-large-cased-whole-word-masking',\n",
" 'bert-large-uncased-whole-word-masking-finetuned-squad',\n",
" 'bert-large-cased-whole-word-masking-finetuned-squad',\n",
" 'bert-base-cased-finetuned-mrpc',\n",
" 'roberta-base',\n",
" 'roberta-large',\n",
" 'roberta-large-mnli',\n",
" 'xlnet-base-cased',\n",
" 'xlnet-large-cased',\n",
" 'distilbert-base-uncased',\n",
" 'distilbert-base-uncased-distilled-squad']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"SequenceClassifier.list_supported_models()"
]
@ -150,7 +105,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {
"tags": [
"parameters"
@ -194,8 +149,7 @@
"LABEL_COL = \"gold_label\"\n",
"LABEL_COL_NUM = \"gold_label_num\"\n",
"\n",
"CACHE_DIR = TemporaryDirectory().name\n",
"CACHE_DIR = \"./temp\""
"CACHE_DIR = TemporaryDirectory().name"
]
},
{
@ -209,7 +163,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -220,7 +174,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -230,33 +184,9 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training dataset size: 392702\n",
"Development (matched) dataset size: 9815\n",
"Development (mismatched) dataset size: 9832\n",
"\n",
" gold_label sentence1 \\\n",
"0 neutral Conceptually cream skimming has two basic dime... \n",
"1 entailment you know during the season and i guess at at y... \n",
"2 entailment One of our number will carry out your instruct... \n",
"3 entailment How do you know? All this is their information... \n",
"4 neutral yeah i tell you what though if you go price so... \n",
"\n",
" sentence2 \n",
"0 Product and geography are what make cream skim... \n",
"1 You lose the things to the following level if ... \n",
"2 A member of my team will execute your orders w... \n",
"3 This information belongs to them. \n",
"4 The tennis shoes have a range of prices. \n"
]
}
],
"outputs": [],
"source": [
"print(\"Training dataset size: {}\".format(train_df.shape[0]))\n",
"print(\"Development (matched) dataset size: {}\".format(dev_df_matched.shape[0]))\n",
@ -267,7 +197,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -278,7 +208,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -293,25 +223,18 @@
"metadata": {},
"source": [
"## Tokenize and Preprocess\n",
"Before training, we tokenize the sentence texts and convert them to lists of tokens. The following steps instantiate a BERT tokenizer given the language, and tokenize the text of the training and testing sets."
"Before training, we tokenize and preprocess the sentence texts to convert them into the format required by transformer model classes. \n",
"The `create_dataloader_from_df` method of the `Processor` class performs the following preprocessing steps and returns a Pytorch `DataLoader`\n",
"* Tokenize input texts using the tokenizer of the pre-trained model specified by `model_name`. \n",
"* Convert the tokens into token indices corresponding to the tokenizer's vocabulary.\n",
"* Pad or truncate the token lists to the specified max length."
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1110 19:14:11.376676 140117887072000 tokenization_utils.py:373] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt from cache at ./temp/cee054f6aafe5e2cf816d2228704e326446785f940f5451a5b26033516a4ac3d.e13dbb970cb325137104fb2e5f36fe865f27746c6b526f6352861b1980eb80b1\n",
"100%|██████████| 392702/392702 [03:48<00:00, 1715.17it/s]\n",
"100%|██████████| 9815/9815 [00:05<00:00, 1797.48it/s]\n",
"100%|██████████| 9832/9832 [00:05<00:00, 1709.69it/s]\n"
]
}
],
"outputs": [],
"source": [
"processor = Processor(model_name=MODEL_NAME, cache_dir=CACHE_DIR, to_lower=TO_LOWER)\n",
"train_dataloader = processor.create_dataloader_from_df(\n",
@ -341,21 +264,6 @@
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In addition, we perform the following preprocessing steps in the cell below:\n",
"\n",
"* Convert the tokens into token indices corresponding to the BERT tokenizer's vocabulary\n",
"* Add the special tokens [CLS] and [SEP] to mark the beginning and end of a sentence\n",
"* Pad or truncate the token lists to the specified max length\n",
"* Return mask lists that indicate paddings' positions\n",
"* Return token type id lists that indicate which sentence the tokens belong to\n",
"\n",
"*See the original [implementation](https://github.com/google-research/bert/blob/master/run_classifier.py) for more information on BERT's input format.*"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -416,31 +324,9 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Evaluating: 100%|██████████| 614/614 [04:53<00:00, 2.12it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction time : 0.082 hrs\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"outputs": [],
"source": [
"with Timer() as t:\n",
" predictions_matched = classifier.predict(dev_dataloader_matched)\n",
@ -449,31 +335,9 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Evaluating: 100%|██████████| 615/615 [04:53<00:00, 2.12it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction time : 0.082 hrs\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"outputs": [],
"source": [
"with Timer() as t:\n",
" predictions_mismatched = classifier.predict(dev_dataloader_mismatched)\n",
@ -489,26 +353,9 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
"contradiction 0.872 0.894 0.883 3213\n",
" entailment 0.913 0.862 0.887 3479\n",
" neutral 0.813 0.842 0.828 3123\n",
"\n",
" micro avg 0.866 0.866 0.866 9815\n",
" macro avg 0.866 0.866 0.866 9815\n",
" weighted avg 0.868 0.866 0.867 9815\n",
"\n"
]
}
],
"outputs": [],
"source": [
"predictions_matched = label_encoder.inverse_transform(predictions_matched)\n",
"print(classification_report(dev_df_matched[LABEL_COL], predictions_matched, digits=3))"
@ -516,28 +363,11 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
"contradiction 0.891 0.888 0.889 3240\n",
" entailment 0.899 0.862 0.880 3463\n",
" neutral 0.810 0.850 0.830 3129\n",
"\n",
" micro avg 0.867 0.867 0.867 9832\n",
" macro avg 0.867 0.867 0.866 9832\n",
" weighted avg 0.868 0.867 0.867 9832\n",
"\n"
]
}
],
"outputs": [],
"source": [
"predictions_mismatched = label_encoder.inverse_transform(predictions_mismatched)\n",
"print(classification_report(dev_df_mismatched[LABEL_COL], predictions_mismatched, digits=3))"
@ -559,6 +389,22 @@
"|xlnet-large-cased|5.15 hrs|0.11 hrs|0.887|0.890|\n",
"|bert-large-cased|4.01 hrs|0.08 hrs|0.867|0.867|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"result_matched_dict = classification_report(dev_df_matched[LABEL_COL], predictions_matched, digits=3, output_dict=True)\n",
"result_mismatched_dict = classification_report(dev_df_mismatched[LABEL_COL], predictions_mismatched, digits=3, output_dict=True)\n",
"sb.glue(\"matched_precision\", result_matched_dict[\"weighted avg\"][\"precision\"])\n",
"sb.glue(\"matched_recall\", result_matched_dict[\"weighted avg\"][\"recall\"])\n",
"sb.glue(\"matched_f1\", result_matched_dict[\"weighted avg\"][\"f1-score\"])\n",
"sb.glue(\"mismatched_precision\", result_mismatched_dict[\"weighted avg\"][\"precision\"])\n",
"sb.glue(\"mismatched_recall\", result_mismatched_dict[\"weighted avg\"][\"recall\"])\n",
"sb.glue(\"mismatched_f1\", result_mismatched_dict[\"weighted avg\"][\"f1-score\"])"
]
}
],
"metadata": {

Просмотреть файл

@ -63,7 +63,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -78,7 +78,7 @@
" sys.path.insert(0, nlp_path)\n",
"\n",
"from utils_nlp.dataset.squad import load_pandas_df\n",
"from utils_nlp.dataset.pytorch import QADataset\n",
"from utils_nlp.models.transformers.datasets import QADataset\n",
"from utils_nlp.models.transformers.question_answering import (\n",
" QAProcessor,\n",
" AnswerExtractor\n",
@ -175,6 +175,7 @@
"DOC_STRIDE = 128\n",
"PER_GPU_BATCH_SIZE = 4\n",
"GRADIENT_ACCUMULATION_STEPS = 1\n",
"NUM_GPUS = torch.cuda.device_count()\n",
"\n",
"if QUICK_RUN:\n",
" TRAIN_DATA_USED_PERCENT = 0.001\n",
@ -558,7 +559,7 @@
"* Pad the concatenated token sequence to `max_seq_length` if it's shorter.\n",
"* Convert the tokens into token indices corresponding to the tokenizer's vocabulary.\n",
"\n",
"`QAProcessor.preprocess` returns a Pytorch TensorDataset. By default, it saves `cached_examples_train/test.jsonl` and `cached_features_train/test.jsonl` to `./cached_qa_features`. These files are required by postprocessing the predicted answer start and end indices to get the final answer text. You can change the default file directory by specifying `feature_cache_dir`. "
"`QAProcessor.preprocess` returns a Pytorch Dataloader. By default, it saves `cached_examples_train/test.jsonl` and `cached_features_train/test.jsonl` to `./cached_qa_features`. These files are required by postprocessing the predicted answer start and end indices to get the final answer text. You can change the default file directory by specifying `feature_cache_dir`. "
]
},
{
@ -576,16 +577,20 @@
],
"source": [
"qa_processor = QAProcessor(model_name=MODEL_NAME, to_lower=DO_LOWER_CASE)\n",
"train_features = qa_processor.preprocess(\n",
"train_dataloader = qa_processor.preprocess(\n",
" train_dataset, \n",
" batch_size=PER_GPU_BATCH_SIZE,\n",
" num_gpus=NUM_GPUS,\n",
" is_training=True,\n",
" max_question_length=MAX_QUESTION_LENGTH,\n",
" max_seq_length=MAX_SEQ_LENGTH,\n",
" doc_stride=DOC_STRIDE\n",
")\n",
"\n",
"dev_features = qa_processor.preprocess(\n",
"dev_dataloader = qa_processor.preprocess(\n",
" dev_dataset, \n",
" batch_size=PER_GPU_BATCH_SIZE,\n",
" num_gpus=NUM_GPUS,\n",
" is_training=False,\n",
" max_question_length=MAX_QUESTION_LENGTH,\n",
" max_seq_length=MAX_SEQ_LENGTH,\n",
@ -616,10 +621,9 @@
"outputs": [],
"source": [
"with Timer() as t:\n",
" qa_extractor.fit(train_dataset=train_features,\n",
" qa_extractor.fit(train_dataloader,\n",
" num_epochs=NUM_EPOCHS,\n",
" learning_rate=LEARNING_RATE,\n",
" per_gpu_batch_size=PER_GPU_BATCH_SIZE,\n",
" gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,\n",
" seed=RANDOM_SEED,\n",
" cache_model=True)\n",
@ -648,7 +652,7 @@
}
],
"source": [
"qa_results = qa_extractor.predict(dev_features, per_gpu_batch_size=PER_GPU_BATCH_SIZE)"
"qa_results = qa_extractor.predict(dev_dataloader)"
]
},
{
@ -824,9 +828,9 @@
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python [default]",
"display_name": "nlp_gpu",
"language": "python",
"name": "python3"
"name": "nlp_gpu"
},
"language_info": {
"codemirror_mode": {
@ -838,7 +842,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.5"
"version": "3.6.8"
}
},
"nbformat": 4,

Просмотреть файл

@ -3,7 +3,7 @@
import pytest
import os
from utils_nlp.dataset.pytorch import QADataset
from utils_nlp.models.transformers.datasets import QADataset
from utils_nlp.models.transformers.question_answering import (
QAProcessor,
AnswerExtractor,
@ -11,6 +11,11 @@ from utils_nlp.models.transformers.question_answering import (
CACHED_FEATURES_TEST_FILE,
)
import torch
NUM_GPUS = max(1, torch.cuda.device_count())
BATCH_SIZE = 8
@pytest.fixture()
def qa_test_data(qa_test_df, tmp):
@ -61,6 +66,8 @@ def qa_test_data(qa_test_df, tmp):
qa_processor_bert = QAProcessor()
train_features_bert = qa_processor_bert.preprocess(
train_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=True,
max_question_length=16,
max_seq_length=64,
@ -70,6 +77,8 @@ def qa_test_data(qa_test_df, tmp):
test_features_bert = qa_processor_bert.preprocess(
test_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=False,
max_question_length=16,
max_seq_length=64,
@ -80,6 +89,8 @@ def qa_test_data(qa_test_df, tmp):
qa_processor_xlnet = QAProcessor(model_name="xlnet-base-cased")
train_features_xlnet = qa_processor_xlnet.preprocess(
train_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=True,
max_question_length=16,
max_seq_length=64,
@ -89,6 +100,8 @@ def qa_test_data(qa_test_df, tmp):
test_features_xlnet = qa_processor_xlnet.preprocess(
test_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=False,
max_question_length=16,
max_seq_length=64,
@ -99,6 +112,8 @@ def qa_test_data(qa_test_df, tmp):
qa_processor_distilbert = QAProcessor(model_name="distilbert-base-uncased")
train_features_distilbert = qa_processor_distilbert.preprocess(
train_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=True,
max_question_length=16,
max_seq_length=64,
@ -108,6 +123,8 @@ def qa_test_data(qa_test_df, tmp):
test_features_distilbert = qa_processor_distilbert.preprocess(
test_dataset,
batch_size=BATCH_SIZE,
num_gpus=NUM_GPUS,
is_training=False,
max_question_length=16,
max_seq_length=64,
@ -157,9 +174,7 @@ def test_QAProcessor(qa_test_data, tmp):
def test_AnswerExtractor(qa_test_data, tmp):
# test bert
qa_extractor_bert = AnswerExtractor(cache_dir=tmp)
qa_extractor_bert.fit(
qa_test_data["train_features_bert"], cache_model=True, per_gpu_batch_size=8
)
qa_extractor_bert.fit(qa_test_data["train_features_bert"], cache_model=True)
# test saving fine-tuned model
model_output_dir = os.path.join(tmp, "fine_tuned")
@ -170,15 +185,11 @@ def test_AnswerExtractor(qa_test_data, tmp):
qa_extractor_from_cache.predict(qa_test_data["test_features_bert"])
qa_extractor_xlnet = AnswerExtractor(model_name="xlnet-base-cased", cache_dir=tmp)
qa_extractor_xlnet.fit(
qa_test_data["train_features_xlnet"], cache_model=False, per_gpu_batch_size=8
)
qa_extractor_xlnet.fit(qa_test_data["train_features_xlnet"], cache_model=False)
qa_extractor_xlnet.predict(qa_test_data["test_features_xlnet"])
qa_extractor_distilbert = AnswerExtractor(model_name="distilbert-base-uncased", cache_dir=tmp)
qa_extractor_distilbert.fit(
qa_test_data["train_features_distilbert"], cache_model=False, per_gpu_batch_size=8
)
qa_extractor_distilbert.fit(qa_test_data["train_features_distilbert"], cache_model=False)
qa_extractor_distilbert.predict(qa_test_data["test_features_distilbert"])

Просмотреть файл

@ -26,7 +26,8 @@ import math
import jsonlines
import torch
from torch.utils.data import TensorDataset, SequentialSampler, DataLoader
from torch.utils.data import TensorDataset, SequentialSampler, DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BertForQuestionAnswering
@ -40,11 +41,7 @@ from transformers.modeling_distilbert import (
)
from utils_nlp.common.pytorch_utils import get_device
from utils_nlp.models.transformers.common import (
MAX_SEQ_LEN,
TOKENIZER_CLASS,
Transformer,
)
from utils_nlp.models.transformers.common import MAX_SEQ_LEN, TOKENIZER_CLASS, Transformer
MODEL_CLASS = {}
MODEL_CLASS.update({k: BertForQuestionAnswering for k in BERT_PRETRAINED_MODEL_ARCHIVE_MAP})
@ -146,6 +143,9 @@ class QAProcessor:
self,
qa_dataset,
is_training,
batch_size=32,
num_gpus=None,
distributed=False,
max_question_length=64,
max_seq_length=MAX_SEQ_LEN,
doc_stride=128,
@ -243,37 +243,42 @@ class QAProcessor:
examples_writer.write_all(qa_examples_json)
features_writer.write_all(features_json)
# TODO: maybe generalize the following code
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if is_training:
start_positions = torch.tensor(
[f.start_position for f in features], dtype=torch.long
)
end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
qa_dataset = TensorDataset(
input_ids,
input_mask,
segment_ids,
start_positions,
end_positions,
cls_index,
p_mask,
)
else:
unique_id_all = torch.tensor(unique_id_all, dtype=torch.long)
qa_dataset = TensorDataset(
input_ids, input_mask, segment_ids, cls_index, p_mask, unique_id_all
)
logger.info("QA examples are saved to {}".format(examples_file))
logger.info("QA features are saved to {}".format(features_file))
return qa_dataset
# TODO: maybe generalize the following code
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if is_training:
start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
qa_dataset = TensorDataset(
input_ids,
input_mask,
segment_ids,
start_positions,
end_positions,
cls_index,
p_mask,
)
else:
unique_id_all = torch.tensor(unique_id_all, dtype=torch.long)
qa_dataset = TensorDataset(
input_ids, input_mask, segment_ids, cls_index, p_mask, unique_id_all
)
if num_gpus is not None:
batch_size = batch_size * max(1, num_gpus)
if distributed:
sampler = DistributedSampler(qa_dataset)
else:
sampler = RandomSampler(qa_dataset) if is_training else SequentialSampler(qa_dataset)
return DataLoader(qa_dataset, sampler=sampler, batch_size=batch_size)
def postprocess(
self,
@ -469,9 +474,8 @@ class AnswerExtractor(Transformer):
def fit(
self,
train_dataset,
train_dataloader,
num_gpus=None,
per_gpu_batch_size=8,
num_epochs=1,
learning_rate=5e-5,
max_grad_norm=1.0,
@ -491,12 +495,10 @@ class AnswerExtractor(Transformer):
Fine-tune pre-trained transofmer models for question answering.
Args:
train_dataset (QADataset): Training dataset of type
:class:`utils_nlp.dataset.pytorch.QADataset`.
train_dataloader (Dataloader): Dataloader for the training data.
num_gpus (int, optional): The number of GPUs to use. If None, all available GPUs will
be used. If set to 0 or GPUs are not available, CPU device will
be used. Defaults to None.
per_gpu_batch_size (int, optional): Training batch size on each GPU. Defaults to 8.
num_epochs (int, optional): Number of training epochs. Defaults to 1.
learning_rate (float, optional): Learning rate of the AdamW optimizer. Defaults to
5e-5.
@ -530,14 +532,13 @@ class AnswerExtractor(Transformer):
self.model.to(device)
super().fine_tune(
train_dataset=train_dataset,
train_dataloader=train_dataloader,
get_inputs=QAProcessor.get_inputs,
device=device,
max_steps=max_steps,
num_train_epochs=num_epochs,
max_grad_norm=max_grad_norm,
gradient_accumulation_steps=gradient_accumulation_steps,
per_gpu_train_batch_size=per_gpu_batch_size,
n_gpu=num_gpus,
weight_decay=weight_decay,
learning_rate=learning_rate,
@ -552,22 +553,13 @@ class AnswerExtractor(Transformer):
if cache_model:
self.save_model()
def predict(
self,
test_dataset,
per_gpu_batch_size=16,
num_gpus=None,
local_rank=-1,
verbose=True,
):
def predict(self, test_dataloader, num_gpus=None, local_rank=-1, verbose=True):
"""
Predicts answer start and end logits.
Args:
test_dataset (QADataset): Testing dataset of type
:class:`utils_nlp.dataset.pytorch.QADataset`.
per_gpu_batch_size (int, optional): Testing batch size on each GPU. Defaults to 16.
test_dataloader (QADataset): Dataloader for the testing data.
num_gpus (int, optional): The number of GPUs to use. If None, all available GPUs will
be used. If set to 0 or GPUs are not available, CPU device will
be used. Defaults to None.
@ -583,16 +575,12 @@ class AnswerExtractor(Transformer):
return tensor.detach().cpu().tolist()
device, num_gpus = get_device(num_gpus=num_gpus, local_rank=local_rank)
batch_size = per_gpu_batch_size * max(1, num_gpus)
self.model.to(device)
# score
self.model.eval()
sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=sampler, batch_size=batch_size)
all_results = []
for batch in tqdm(test_dataloader, desc="Evaluating", disable=not verbose):
batch = tuple(t.to(device) for t in batch)