remove obsolete tests and links
This commit is contained in:
Родитель
d71de4a1d5
Коммит
b0dc696acc
|
@ -85,6 +85,8 @@ The following is a list of related repositories that we like and think are usefu
|
|||
|[AzureML-BERT](https://github.com/Microsoft/AzureML-BERT)|End-to-end recipes for pre-training and fine-tuning BERT using Azure Machine Learning service.|
|
||||
|[MASS](https://github.com/microsoft/MASS)|MASS: Masked Sequence to Sequence Pre-training for Language Generation.|
|
||||
|[MT-DNN](https://github.com/namisan/mt-dnn)|Multi-Task Deep Neural Networks for Natural Language Understanding.|
|
||||
|[UniLM](https://github.com/microsoft/unilm)|Unified Language Model Pre-training.|
|
||||
|
||||
|
||||
|
||||
## Build Status
|
||||
|
|
|
@ -19,8 +19,5 @@ The following summarizes each notebook for Text Classification. Each notebook pr
|
|||
|Notebook|Environment|Description|Dataset|
|
||||
|---|---|---|---|
|
||||
|[BERT for text classification on AzureML](tc_bert_azureml.ipynb) |Azure ML|A notebook which walks through fine-tuning and evaluating pre-trained BERT model on a distributed setup with AzureML. |[MultiNLI](https://www.nyu.edu/projects/bowman/multinli/)|
|
||||
|[XLNet for text classification with MNLI](tc_mnli_xlnet.ipynb)|Local| A notebook which walks through fine-tuning and evaluating a pre-trained XLNet model on a subset of the MultiNLI dataset|[MultiNLI](https://www.nyu.edu/projects/bowman/multinli/)|
|
||||
|[BERT for text classification of Hindi BBC News](tc_bbc_bert_hi.ipynb)|Local| A notebook which walks through fine-tuning and evaluating a pre-trained BERT model on Hindi BBC news data|[BBC Hindi News](https://github.com/NirantK/hindi2vec/releases/tag/bbc-hindi-v0.1)|
|
||||
|[BERT for text classification of Arabic News](tc_dac_bert_ar.ipynb)|Local| A notebook which walks through fine-tuning and evaluating a pre-trained BERT model on Arabic news articles|[DAC](https://data.mendeley.com/datasets/v524p5dhpj/2)|
|
||||
|[Text Classification of MultiNLI Sentences using Multiple Transformer Models](tc_mnli_transformers.ipynb)|Local| A notebook which walks through fine-tuning and evaluating a number of pre-trained transformer models|[MultiNLI](https://www.nyu.edu/projects/bowman/multinli/)|
|
||||
|[Text Classification of Multi Language Datasets using Transformer Model](tc_multi_languages_transformers.ipynb)|Local|A notebook which walks through fine-tuning and evaluating a pre-trained transformer model for multiple datasets in different language|[MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) <br> [BBC Hindi News](https://github.com/NirantK/hindi2vec/releases/tag/bbc-hindi-v0.1) <br> [DAC](https://data.mendeley.com/datasets/v524p5dhpj/2)
|
||||
|
|
|
@ -37,50 +37,6 @@ def test_tc_mnli_transformers(notebooks, tmp):
|
|||
assert pytest.approx(result["f1"], 0.89, abs=ABS_TOL)
|
||||
|
||||
|
||||
@pytest.mark.gpu
|
||||
@pytest.mark.integration
|
||||
def test_tc_dac_bert_ar(notebooks, tmp):
|
||||
notebook_path = notebooks["tc_dac_bert_ar"]
|
||||
pm.execute_notebook(
|
||||
notebook_path,
|
||||
OUTPUT_NOTEBOOK,
|
||||
kernel_name=KERNEL_NAME,
|
||||
parameters=dict(
|
||||
NUM_GPUS=1,
|
||||
DATA_FOLDER=tmp,
|
||||
BERT_CACHE_DIR=tmp,
|
||||
MAX_LEN=175,
|
||||
BATCH_SIZE=16,
|
||||
NUM_EPOCHS=1,
|
||||
TRAIN_SIZE=0.8,
|
||||
NUM_ROWS=8000,
|
||||
RANDOM_STATE=0,
|
||||
),
|
||||
)
|
||||
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
|
||||
assert pytest.approx(result["accuracy"], 0.871, abs=ABS_TOL)
|
||||
assert pytest.approx(result["precision"], 0.865, abs=ABS_TOL)
|
||||
assert pytest.approx(result["recall"], 0.852, abs=ABS_TOL)
|
||||
assert pytest.approx(result["f1"], 0.845, abs=ABS_TOL)
|
||||
|
||||
|
||||
@pytest.mark.gpu
|
||||
@pytest.mark.integration
|
||||
def test_tc_bbc_bert_hi(notebooks, tmp):
|
||||
notebook_path = notebooks["tc_bbc_bert_hi"]
|
||||
pm.execute_notebook(
|
||||
notebook_path,
|
||||
OUTPUT_NOTEBOOK,
|
||||
kernel_name=KERNEL_NAME,
|
||||
parameters=dict(NUM_GPUS=1, DATA_FOLDER=tmp, BERT_CACHE_DIR=tmp, NUM_EPOCHS=1),
|
||||
)
|
||||
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
|
||||
assert pytest.approx(result["accuracy"], 0.71, abs=ABS_TOL)
|
||||
assert pytest.approx(result["precision"], 0.25, abs=ABS_TOL)
|
||||
assert pytest.approx(result["recall"], 0.28, abs=ABS_TOL)
|
||||
assert pytest.approx(result["f1"], 0.26, abs=ABS_TOL)
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
@pytest.mark.azureml
|
||||
@pytest.mark.gpu
|
||||
|
@ -118,6 +74,7 @@ def test_tc_bert_azureml(
|
|||
if os.path.exists("outputs"):
|
||||
shutil.rmtree("outputs")
|
||||
|
||||
|
||||
@pytest.mark.gpu
|
||||
@pytest.mark.integration
|
||||
def test_multi_languages_transformer(notebooks, tmp):
|
||||
|
@ -126,10 +83,7 @@ def test_multi_languages_transformer(notebooks, tmp):
|
|||
notebook_path,
|
||||
OUTPUT_NOTEBOOK,
|
||||
kernel_name=KERNEL_NAME,
|
||||
parameters={
|
||||
"QUICK_RUN": True,
|
||||
"USE_DATASET": "dac"
|
||||
},
|
||||
parameters={"QUICK_RUN": True, "USE_DATASET": "dac"},
|
||||
)
|
||||
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
|
||||
assert pytest.approx(result["precision"], 0.94, abs=ABS_TOL)
|
||||
|
|
Загрузка…
Ссылка в новой задаче