add documentation; add the original code source info
This commit is contained in:
Родитель
5b56f6e7d0
Коммит
b9c8a987d3
|
@ -50,7 +50,7 @@ The following is a summary of the commonly used NLP scenarios covered in the rep
|
|||
|-------------------------| ------------------- |-------|---|
|
||||
|Text Classification |BERT, XLNet, RoBERTa| Text classification is a supervised learning method of learning and predicting the category or the class of a document given its text content. |English, Hindi, Arabic|
|
||||
|Named Entity Recognition |BERT| Named entity recognition (NER) is the task of classifying words or key phrases of a text into predefined entities of interest. |English|
|
||||
|Text Summarization|BERTSum <br> UniLM (s2s-ft)|Text summarization is a language generation task of summarizing the input text into a shorter paragraph of text.|English
|
||||
|Text Summarization|BERTSumExt <br> BERTSumAbs <br> UniLM (s2s-ft)|Text summarization is a language generation task of summarizing the input text into a shorter paragraph of text.|English
|
||||
|Entailment |BERT, XLNet, RoBERTa| Textual entailment is the task of classifying the binary relation between two natural-language texts, *text* and *hypothesis*, to determine if the *text* agrees with the *hypothesis* or not. |English|
|
||||
|Question Answering |BiDAF, BERT, XLNet| Question answering (QA) is the task of retrieving or generating a valid answer for a given query in natural language, provided with a passage related to the query. |English|
|
||||
|Sentence Similarity |BERT, GenSen| Sentence similarity is the process of computing a similarity score given a pair of text documents. |English|
|
||||
|
|
|
@ -18,7 +18,18 @@
|
|||
}
|
||||
},
|
||||
"license": "Apache-2.0"
|
||||
},
|
||||
{
|
||||
"component": {
|
||||
"type": "git",
|
||||
"git": {
|
||||
"repositoryUrl": "https://github.com/nlpyang/PreSumm",
|
||||
"commitHash": "2df3312582a3a014aacbc1be810841705c67d06e"
|
||||
}
|
||||
},
|
||||
"license": "MIT License"
|
||||
}
|
||||
|
||||
],
|
||||
"Version": 1
|
||||
}
|
||||
}
|
||||
|
|
|
@ -356,7 +356,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"generated_summaries[1]"
|
||||
"generated_summaries[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -365,7 +365,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reference_summaries[1]"
|
||||
"reference_summaries[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
""" Implementation of ADAM optimizer. """
|
||||
|
||||
import math
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
""" Beam classes used in the beam search. """
|
||||
|
||||
from __future__ import division
|
||||
import torch
|
||||
from .penalties import PenaltyBuilder
|
||||
|
|
|
@ -1,5 +1,9 @@
|
|||
"""
|
||||
Implementation of "Attention is All You Need"
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
"""
|
||||
Decoder implementation of "Attention is All You Need"
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
"Encoder classes used in the BertSum models."
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
|
||||
|
||||
"""
|
||||
This file handles the details of the loss function during training.
|
||||
|
||||
|
|
|
@ -1,7 +1,12 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
"""
|
||||
The BertSum models for both extractive and abstractive summarization.
|
||||
"""
|
||||
|
||||
import sys
|
||||
|
||||
# sys.path.insert(0, "/dadendev/PreSumm2/PreSumm/src")
|
||||
|
||||
import copy
|
||||
|
||||
import torch
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
|
||||
""" Optimizers class """
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
""" PenaltyBuilder Class used in prediction/translation """
|
||||
|
||||
from __future__ import division
|
||||
import torch
|
||||
|
||||
|
|
|
@ -1,4 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
# This script reuses code from https://github.com/nlpyang/Presumm
|
||||
|
||||
""" Translator Class and builder """
|
||||
from __future__ import print_function
|
||||
import codecs
|
||||
|
|
Загрузка…
Ссылка в новой задаче