This commit is contained in:
FORCHA 2021-12-23 10:23:20 +01:00 коммит произвёл GitHub
Родитель d39ea25e98
Коммит f845d5e633
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
5 изменённых файлов: 10381 добавлений и 2 удалений

Просмотреть файл

@ -94,20 +94,28 @@ nn-meter --list-predictors
## Predict latency of saved CNN model
After installation, a command named `nn-meter` is enabled. To predict the latency for a CNN model with a predefined predictor in command line, users can run the following commands
After installation, a command named `nn-meter` is enabled. To predict the latency for a CNN model with a predefined predictor in command line, users can run the following commands (sample models can be downloaded [here](./material/testmodels))
```bash
# for Tensorflow (*.pb) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --tensorflow <pb-file_or_folder>
# Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.pb
# for ONNX (*.onnx) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --onnx <onnx-file_or_folder>
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.onnx
# for torch model from torchvision model zoo (str)
nn-meter predict --predictor <hardware> [--predictor-version <version>] --torchvision <model-name> <model-name>...
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --torchvision mobilenet_v2 mobilenet_v2
# for nn-Meter IR (*.json) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --nn-meter-ir <json-file_or_folder>
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.json
```
`--predictor-version <version>` arguments is optional. When the predictor version is not specified by users, nn-meter will use the latest version of the predictor.

Просмотреть файл

@ -32,20 +32,28 @@ nn-meter --list-predictors
## Predict latency of saved CNN model
After installation, a command named `nn-meter` is enabled. To predict the latency for a CNN model with a predefined predictor in command line, users can run the following commands
After installation, a command named `nn-meter` is enabled. To predict the latency for a CNN model with a predefined predictor in command line, users can run the following commands (sample models can be downloaded [here](../../material/testmodels))
```bash
# for Tensorflow (*.pb) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --tensorflow <pb-file_or_folder>
# Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.pb
# for ONNX (*.onnx) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --onnx <onnx-file_or_folder>
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.onnx
# for torch model from torchvision model zoo (str)
nn-meter predict --predictor <hardware> [--predictor-version <version>] --torchvision <model-name> <model-name>...
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --torchvision mobilenet_v2 mobilenet_v2
# for nn-Meter IR (*.json) file
nn-meter predict --predictor <hardware> [--predictor-version <version>] --nn-meter-ir <json-file_or_folder>
#Example Usage
nn-meter predict --predictor cortexA76cpu_tflite21 --predictor-version 1.0 --tensorflow mobilenetv3small_0.json
```
`--predictor-version <version>` arguments is optional. When the predictor version is not specified by users, nn-meter will use the latest version of the predictor.

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Двоичные данные
material/testmodels/mobilenetv3small_0.onnx Normal file

Двоичный файл не отображается.

Двоичные данные
material/testmodels/mobilenetv3small_0.pb Normal file

Двоичный файл не отображается.