зеркало из https://github.com/microsoft/nni.git
[BugFix] Using the builtin types like `int`, `bool` and `float`. (#5620)
This commit is contained in:
Родитель
750546b111
Коммит
60c9459205
|
@ -303,7 +303,7 @@ class SubPolicy(object):
|
||||||
"translateY": np.linspace(0, 150 / 331, 10),
|
"translateY": np.linspace(0, 150 / 331, 10),
|
||||||
"rotate": np.linspace(0, 30, 10),
|
"rotate": np.linspace(0, 30, 10),
|
||||||
"color": np.linspace(0.0, 0.9, 10),
|
"color": np.linspace(0.0, 0.9, 10),
|
||||||
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
|
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(int),
|
||||||
"solarize": np.linspace(256, 0, 10),
|
"solarize": np.linspace(256, 0, 10),
|
||||||
"contrast": np.linspace(0.0, 0.9, 10),
|
"contrast": np.linspace(0.0, 0.9, 10),
|
||||||
"sharpness": np.linspace(0.0, 0.9, 10),
|
"sharpness": np.linspace(0.0, 0.9, 10),
|
||||||
|
|
|
@ -46,8 +46,8 @@ def create_mnist_model(hyper_params, input_shape=(H, W, 1), num_classes=NUM_CLAS
|
||||||
def load_mnist_data(args):
|
def load_mnist_data(args):
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
@ -216,8 +216,8 @@ def load_mnist_data(args):
|
||||||
'''
|
'''
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
|
|
@ -46,8 +46,8 @@ def create_mnist_model(hyper_params, input_shape=(H, W, 1), num_classes=NUM_CLAS
|
||||||
def load_mnist_data(args):
|
def load_mnist_data(args):
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
@ -213,8 +213,8 @@ def load_mnist_data(args):
|
||||||
'''
|
'''
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
|
|
@ -65,8 +65,8 @@ def load_mnist_data(args):
|
||||||
'''
|
'''
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
|
|
@ -67,8 +67,8 @@ def load_mnist_data(args):
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data(path=mnist_path)
|
(x_train, y_train), (x_test, y_test) = mnist.load_data(path=mnist_path)
|
||||||
os.remove(mnist_path)
|
os.remove(mnist_path)
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
|
|
@ -67,8 +67,8 @@ def load_mnist_data(args):
|
||||||
"""
|
"""
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
x_train = (np.expand_dims(x_train, -1).astype(np.float) / 255.)[:args.num_train]
|
x_train = (np.expand_dims(x_train, -1).astype(float) / 255.)[:args.num_train]
|
||||||
x_test = (np.expand_dims(x_test, -1).astype(np.float) / 255.)[:args.num_test]
|
x_test = (np.expand_dims(x_test, -1).astype(float) / 255.)[:args.num_test]
|
||||||
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
y_train = keras.utils.to_categorical(y_train, NUM_CLASSES)[:args.num_train]
|
||||||
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)[:args.num_test]
|
||||||
|
|
||||||
|
|
|
@ -287,7 +287,7 @@ class CurveModel:
|
||||||
-------
|
-------
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
init_weight = np.ones((self.effective_model_num), dtype=np.float) / self.effective_model_num
|
init_weight = np.ones((self.effective_model_num), dtype=float) / self.effective_model_num
|
||||||
self.weight_samples = np.broadcast_to(init_weight, (NUM_OF_INSTANCE, self.effective_model_num))
|
self.weight_samples = np.broadcast_to(init_weight, (NUM_OF_INSTANCE, self.effective_model_num))
|
||||||
for _ in range(NUM_OF_SIMULATION_TIME):
|
for _ in range(NUM_OF_SIMULATION_TIME):
|
||||||
# sample new value from Q(i, j)
|
# sample new value from Q(i, j)
|
||||||
|
@ -298,7 +298,7 @@ class CurveModel:
|
||||||
# sample u
|
# sample u
|
||||||
u = np.random.rand(NUM_OF_INSTANCE)
|
u = np.random.rand(NUM_OF_INSTANCE)
|
||||||
# new value
|
# new value
|
||||||
change_value_flag = (u < alpha).astype(np.int)
|
change_value_flag = (u < alpha).astype(int)
|
||||||
for j in range(NUM_OF_INSTANCE):
|
for j in range(NUM_OF_INSTANCE):
|
||||||
new_values[j] = self.weight_samples[j] * (1 - change_value_flag[j]) + new_values[j] * change_value_flag[j]
|
new_values[j] = self.weight_samples[j] * (1 - change_value_flag[j]) + new_values[j] * change_value_flag[j]
|
||||||
self.weight_samples = new_values
|
self.weight_samples = new_values
|
||||||
|
|
|
@ -219,7 +219,7 @@ class IncrementalGaussianProcess:
|
||||||
self._l_matrix.shape[0]))
|
self._l_matrix.shape[0]))
|
||||||
k_inv = l_inv.dot(l_inv.T)
|
k_inv = l_inv.dot(l_inv.T)
|
||||||
# Compute variance of predictive distribution
|
# Compute variance of predictive distribution
|
||||||
y_var = np.ones(len(train_x), dtype=np.float)
|
y_var = np.ones(len(train_x), dtype=float)
|
||||||
y_var -= np.einsum("ij,ij->i", np.dot(k_trans, k_inv), k_trans)
|
y_var -= np.einsum("ij,ij->i", np.dot(k_trans, k_inv), k_trans)
|
||||||
|
|
||||||
# Check if any of the variances is negative because of
|
# Check if any of the variances is negative because of
|
||||||
|
|
|
@ -209,7 +209,7 @@ class PPOModel:
|
||||||
mb_actions = np.asarray(mb_actions)
|
mb_actions = np.asarray(mb_actions)
|
||||||
mb_values = np.asarray(mb_values, dtype=np.float32)
|
mb_values = np.asarray(mb_values, dtype=np.float32)
|
||||||
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
||||||
mb_dones = np.asarray(mb_dones, dtype=np.bool)
|
mb_dones = np.asarray(mb_dones, dtype=bool)
|
||||||
last_values = self.model.value(np_obs, S=states, M=dones)
|
last_values = self.model.value(np_obs, S=states, M=dones)
|
||||||
|
|
||||||
return mb_obs, mb_actions, mb_values, mb_neglogpacs, mb_dones, last_values
|
return mb_obs, mb_actions, mb_values, mb_neglogpacs, mb_dones, last_values
|
||||||
|
@ -231,7 +231,7 @@ class PPOModel:
|
||||||
mb_returns = np.zeros_like(mb_rewards)
|
mb_returns = np.zeros_like(mb_rewards)
|
||||||
mb_advs = np.zeros_like(mb_rewards)
|
mb_advs = np.zeros_like(mb_rewards)
|
||||||
lastgaelam = 0
|
lastgaelam = 0
|
||||||
last_dones = np.asarray([True for _ in trials_result], dtype=np.bool) # ugly
|
last_dones = np.asarray([True for _ in trials_result], dtype=bool) # ugly
|
||||||
for t in reversed(range(self.model_config.nsteps)):
|
for t in reversed(range(self.model_config.nsteps)):
|
||||||
if t == self.model_config.nsteps - 1:
|
if t == self.model_config.nsteps - 1:
|
||||||
nextnonterminal = 1.0 - last_dones
|
nextnonterminal = 1.0 - last_dones
|
||||||
|
|
|
@ -13,7 +13,7 @@ def _labeling_from_architecture(architecture, vertices):
|
||||||
|
|
||||||
|
|
||||||
def _adjancency_matrix_from_architecture(architecture, vertices):
|
def _adjancency_matrix_from_architecture(architecture, vertices):
|
||||||
matrix = np.zeros((vertices, vertices), dtype=np.bool) # type: ignore
|
matrix = np.zeros((vertices, vertices), dtype=bool) # type: ignore
|
||||||
for i in range(1, vertices):
|
for i in range(1, vertices):
|
||||||
for k in architecture['input{}'.format(i)]:
|
for k in architecture['input{}'.format(i)]:
|
||||||
matrix[k, i] = 1
|
matrix[k, i] = 1
|
||||||
|
|
|
@ -70,7 +70,7 @@ def _eliminate_list_slice(shape: tuple, slice_: multidim_slice) -> multidim_slic
|
||||||
for i in range(len(slice_)):
|
for i in range(len(slice_)):
|
||||||
if isinstance(slice_[i], list):
|
if isinstance(slice_[i], list):
|
||||||
# convert list of slices to mask
|
# convert list of slices to mask
|
||||||
mask = np.zeros(shape[i], dtype=np.bool) # type: ignore
|
mask = np.zeros(shape[i], dtype=bool) # type: ignore
|
||||||
for sl in cast(List[slice], slice_[i]):
|
for sl in cast(List[slice], slice_[i]):
|
||||||
mask[sl] = 1
|
mask[sl] = 1
|
||||||
result.append(mask)
|
result.append(mask)
|
||||||
|
|
|
@ -9,5 +9,4 @@ filterwarnings =
|
||||||
ignore:Using key to access the identifier of:DeprecationWarning
|
ignore:Using key to access the identifier of:DeprecationWarning
|
||||||
ignore:layer_choice.choices is deprecated.:DeprecationWarning
|
ignore:layer_choice.choices is deprecated.:DeprecationWarning
|
||||||
ignore:The truth value of an empty array is ambiguous.:DeprecationWarning
|
ignore:The truth value of an empty array is ambiguous.:DeprecationWarning
|
||||||
ignore:`np.bool` is a deprecated alias for the builtin `bool`:DeprecationWarning
|
|
||||||
ignore:nni.retiarii.serialize is deprecated and will be removed in future release.:DeprecationWarning
|
ignore:nni.retiarii.serialize is deprecated and will be removed in future release.:DeprecationWarning
|
||||||
|
|
|
@ -35,7 +35,7 @@ class TestCurveFittingAssessor(unittest.TestCase):
|
||||||
test_model.point_num = 9
|
test_model.point_num = 9
|
||||||
test_model.target_pos = 20
|
test_model.target_pos = 20
|
||||||
test_model.trial_history = ([1, 1, 1, 1, 1, 1, 1, 1, 1])
|
test_model.trial_history = ([1, 1, 1, 1, 1, 1, 1, 1, 1])
|
||||||
test_model.weight_samples = np.ones((test_model.effective_model_num), dtype=np.float) / test_model.effective_model_num
|
test_model.weight_samples = np.ones((test_model.effective_model_num), dtype=float) / test_model.effective_model_num
|
||||||
self.assertAlmostEqual(test_model.predict_y('vap', 9), 0.5591906328335763)
|
self.assertAlmostEqual(test_model.predict_y('vap', 9), 0.5591906328335763)
|
||||||
self.assertAlmostEqual(test_model.predict_y('logx_linear', 15), 1.0704360293379522)
|
self.assertAlmostEqual(test_model.predict_y('logx_linear', 15), 1.0704360293379522)
|
||||||
self.assertAlmostEqual(test_model.f_comb(9, test_model.weight_samples), 1.1543379521172443)
|
self.assertAlmostEqual(test_model.f_comb(9, test_model.weight_samples), 1.1543379521172443)
|
||||||
|
|
Загрузка…
Ссылка в новой задаче