зеркало из https://github.com/microsoft/nni.git
Fix a few bugs in Retiarii and upgrade Dockerfile (#3713)
This commit is contained in:
Родитель
7eaf9c2476
Коммит
a284f71d11
13
Dockerfile
13
Dockerfile
|
@ -1,7 +1,7 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
FROM nvidia/cuda:9.2-cudnn7-runtime-ubuntu18.04
|
||||
FROM nvidia/cuda:10.2-cudnn8-runtime-ubuntu18.04
|
||||
|
||||
ARG NNI_RELEASE
|
||||
|
||||
|
@ -44,7 +44,7 @@ RUN ln -s python3 /usr/bin/python
|
|||
RUN python3 -m pip install --upgrade pip==20.2.4 setuptools==50.3.2
|
||||
|
||||
# numpy 1.14.3 scipy 1.1.0
|
||||
RUN python3 -m pip --no-cache-dir install numpy==1.14.3 scipy==1.1.0
|
||||
RUN python3 -m pip --no-cache-dir install numpy==1.19.5 scipy==1.6.3
|
||||
|
||||
#
|
||||
# TensorFlow
|
||||
|
@ -52,15 +52,14 @@ RUN python3 -m pip --no-cache-dir install numpy==1.14.3 scipy==1.1.0
|
|||
RUN python3 -m pip --no-cache-dir install tensorflow==2.3.1
|
||||
|
||||
#
|
||||
# Keras 2.1.6
|
||||
# Keras
|
||||
#
|
||||
RUN python3 -m pip --no-cache-dir install Keras==2.1.6
|
||||
RUN python3 -m pip --no-cache-dir install Keras==2.4.0
|
||||
|
||||
#
|
||||
# PyTorch
|
||||
#
|
||||
RUN python3 -m pip --no-cache-dir install torch==1.6.0
|
||||
RUN python3 -m pip install torchvision==0.7.0
|
||||
RUN python3 -m pip --no-cache-dir install torch==1.7.1 torchvision==0.8.2 pytorch-lightning==1.3.3
|
||||
|
||||
#
|
||||
# sklearn 0.24.1
|
||||
|
@ -70,7 +69,7 @@ RUN python3 -m pip --no-cache-dir install scikit-learn==0.24.1
|
|||
#
|
||||
# pandas==0.23.4 lightgbm==2.2.2
|
||||
#
|
||||
RUN python3 -m pip --no-cache-dir install pandas==0.23.4 lightgbm==2.2.2
|
||||
RUN python3 -m pip --no-cache-dir install pandas==1.1 lightgbm==2.2.2
|
||||
|
||||
#
|
||||
# Install NNI
|
||||
|
|
|
@ -8,10 +8,13 @@ If you are experiencing issues with TorchScript, or the generated model code by
|
|||
|
||||
This will come as the default execution engine in future version of Retiarii.
|
||||
|
||||
Two steps are needed to enable this engine now.
|
||||
Three steps are needed to enable this engine now.
|
||||
|
||||
1. Add ``@nni.retiarii.model_wrapper`` decorator outside the whole PyTorch model.
|
||||
2. Add ``config.execution_engine = 'py'`` to ``RetiariiExeConfig``.
|
||||
3. If you need to export top models, formatter needs to be set to ``dict``. Exporting ``code`` won't work with this engine.
|
||||
|
||||
.. note:: You should always use ``super().__init__()` instead of ``super(MyNetwork, self).__init__()`` in the PyTorch model, because the latter one has issues with model wrapper.
|
||||
|
||||
``@basic_unit`` and ``serializer``
|
||||
----------------------------------
|
||||
|
|
|
@ -4,22 +4,23 @@ import nni.retiarii.nn.pytorch as nn
|
|||
import nni.retiarii.strategy as strategy
|
||||
import nni.retiarii.evaluator.pytorch.lightning as pl
|
||||
import torch.nn.functional as F
|
||||
from nni.retiarii import serialize
|
||||
from nni.retiarii import serialize, model_wrapper
|
||||
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment, debug_mutated_model
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
|
||||
# uncomment this for python execution engine
|
||||
# @model_wrapper
|
||||
class Net(nn.Module):
|
||||
def __init__(self, hidden_size):
|
||||
super(Net, self).__init__()
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
||||
self.fc1 = nn.LayerChoice([
|
||||
nn.Linear(4*4*50, hidden_size),
|
||||
nn.Linear(4*4*50, hidden_size, bias=False)
|
||||
])
|
||||
], label='fc1_choice')
|
||||
self.fc2 = nn.Linear(hidden_size, 10)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -55,8 +56,13 @@ if __name__ == '__main__':
|
|||
exp_config.trial_concurrency = 2
|
||||
exp_config.max_trial_number = 2
|
||||
exp_config.training_service.use_active_gpu = False
|
||||
export_formatter = 'code'
|
||||
|
||||
# uncomment this for python execution engine
|
||||
# exp_config.execution_engine = 'py'
|
||||
# export_formatter = 'dict'
|
||||
|
||||
exp.run(exp_config, 8081 + random.randint(0, 100))
|
||||
print('Final model:')
|
||||
for model_code in exp.export_top_models():
|
||||
for model_code in exp.export_top_models(formatter=export_formatter):
|
||||
print(model_code)
|
||||
|
|
|
@ -162,6 +162,8 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
import nni.retiarii.nn.pytorch
|
||||
|
||||
{}
|
||||
|
||||
{}
|
||||
|
|
|
@ -30,7 +30,7 @@ class PythonGraphData:
|
|||
class PurePythonExecutionEngine(BaseExecutionEngine):
|
||||
@classmethod
|
||||
def pack_model_data(cls, model: Model) -> Any:
|
||||
mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model.history}
|
||||
mutation = get_mutation_dict(model)
|
||||
graph_data = PythonGraphData(get_importable_name(model.python_class, relocate_module=True),
|
||||
model.python_init_params, mutation, model.evaluator)
|
||||
return graph_data
|
||||
|
@ -51,3 +51,7 @@ def _unpack_if_only_one(ele: List[Any]):
|
|||
if len(ele) == 1:
|
||||
return ele[0]
|
||||
return ele
|
||||
|
||||
|
||||
def get_mutation_dict(model: Model):
|
||||
return {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model.history}
|
||||
|
|
|
@ -29,6 +29,7 @@ from nni.tools.nnictl.command_utils import kill_command
|
|||
from ..codegen import model_to_pytorch_script
|
||||
from ..converter import convert_to_graph
|
||||
from ..execution import list_models, set_execution_engine
|
||||
from ..execution.python import get_mutation_dict
|
||||
from ..graph import Model, Evaluator
|
||||
from ..integration import RetiariiAdvisor
|
||||
from ..mutator import Mutator
|
||||
|
@ -317,7 +318,7 @@ class RetiariiExperiment(Experiment):
|
|||
"""
|
||||
Export several top performing models.
|
||||
|
||||
For one-shot algorithms, only top-1 is supported. For others, ``optimize_mode`` asnd ``formater`` is
|
||||
For one-shot algorithms, only top-1 is supported. For others, ``optimize_mode`` and ``formatter`` are
|
||||
available for customization.
|
||||
|
||||
top_k : int
|
||||
|
@ -326,8 +327,12 @@ class RetiariiExperiment(Experiment):
|
|||
``maximize`` or ``minimize``. Not supported by one-shot algorithms.
|
||||
``optimize_mode`` is likely to be removed and defined in strategy in future.
|
||||
formatter : str
|
||||
Only model code is supported for now. Not supported by one-shot algorithms.
|
||||
Support ``code`` and ``dict``. Not supported by one-shot algorithms.
|
||||
If ``code``, the python code of model will be returned.
|
||||
If ``dict``, the mutation history will be returned.
|
||||
"""
|
||||
if formatter == 'code':
|
||||
assert self.config.execution_engine != 'py', 'You should use `dict` formatter when using Python execution engine.'
|
||||
if isinstance(self.trainer, BaseOneShotTrainer):
|
||||
assert top_k == 1, 'Only support top_k is 1 for now.'
|
||||
return self.trainer.export()
|
||||
|
@ -335,9 +340,11 @@ class RetiariiExperiment(Experiment):
|
|||
all_models = filter(lambda m: m.metric is not None, list_models())
|
||||
assert optimize_mode in ['maximize', 'minimize']
|
||||
all_models = sorted(all_models, key=lambda m: m.metric, reverse=optimize_mode == 'maximize')
|
||||
assert formatter == 'code', 'Export formatter other than "code" is not supported yet.'
|
||||
assert formatter in ['code', 'dict'], 'Export formatter other than "code" and "dict" is not supported yet.'
|
||||
if formatter == 'code':
|
||||
return [model_to_pytorch_script(model) for model in all_models[:top_k]]
|
||||
elif formatter == 'dict':
|
||||
return [get_mutation_dict(model) for model in all_models[:top_k]]
|
||||
|
||||
def retrain_model(self, model):
|
||||
"""
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# This file might cause import error for those who didn't install RL-related dependencies
|
||||
|
||||
import logging
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
@ -9,6 +10,7 @@ import torch.nn as nn
|
|||
|
||||
from gym import spaces
|
||||
from tianshou.data import to_torch
|
||||
from tianshou.env.worker import EnvWorker
|
||||
|
||||
from .utils import get_targeted_model
|
||||
from ..graph import ModelStatus
|
||||
|
@ -18,6 +20,41 @@ from ..execution import submit_models, wait_models
|
|||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MultiThreadEnvWorker(EnvWorker):
|
||||
def __init__(self, env_fn):
|
||||
self.env = env_fn()
|
||||
self.pool = ThreadPool(processes=1)
|
||||
super().__init__(env_fn)
|
||||
|
||||
def __getattr__(self, key):
|
||||
return getattr(self.env, key)
|
||||
|
||||
def reset(self):
|
||||
return self.env.reset()
|
||||
|
||||
@staticmethod
|
||||
def wait(*args, **kwargs):
|
||||
raise NotImplementedError('Async collect is not supported yet.')
|
||||
|
||||
def send_action(self, action) -> None:
|
||||
# self.result is actually a handle
|
||||
self.result = self.pool.apply_async(self.env.step, (action,))
|
||||
|
||||
def get_result(self):
|
||||
return self.result.get()
|
||||
|
||||
def seed(self, seed):
|
||||
super().seed(seed)
|
||||
return self.env.seed(seed)
|
||||
|
||||
def render(self, **kwargs):
|
||||
return self.env.render(**kwargs)
|
||||
|
||||
def close_env(self) -> None:
|
||||
self.pool.terminate()
|
||||
return self.env.close()
|
||||
|
||||
|
||||
class ModelEvaluationEnv(gym.Env):
|
||||
def __init__(self, base_model, mutators, search_space):
|
||||
self.base_model = base_model
|
||||
|
@ -107,7 +144,7 @@ class Actor(nn.Module):
|
|||
# to take care of choices with different number of options
|
||||
mask = torch.arange(self.action_dim).expand(len(out), self.action_dim) >= obs['action_dim'].unsqueeze(1)
|
||||
out[mask.to(out.device)] = float('-inf')
|
||||
return nn.functional.softmax(out), kwargs.get('state', None)
|
||||
return nn.functional.softmax(out, dim=-1), kwargs.get('state', None)
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
|
|
|
@ -8,10 +8,10 @@ from ..execution import query_available_resources
|
|||
try:
|
||||
has_tianshou = True
|
||||
import torch
|
||||
from tianshou.data import AsyncCollector, Collector, VectorReplayBuffer
|
||||
from tianshou.env import SubprocVectorEnv
|
||||
from tianshou.data import Collector, VectorReplayBuffer
|
||||
from tianshou.env import BaseVectorEnv
|
||||
from tianshou.policy import BasePolicy, PPOPolicy # pylint: disable=unused-import
|
||||
from ._rl_impl import ModelEvaluationEnv, Preprocessor, Actor, Critic
|
||||
from ._rl_impl import ModelEvaluationEnv, MultiThreadEnvWorker, Preprocessor, Actor, Critic
|
||||
except ImportError:
|
||||
has_tianshou = False
|
||||
|
||||
|
@ -25,8 +25,6 @@ class PolicyBasedRL(BaseStrategy):
|
|||
This is a wrapper of algorithms provided in tianshou (PPO by default),
|
||||
and can be easily customized with other algorithms that inherit ``BasePolicy`` (e.g., REINFORCE [1]_).
|
||||
|
||||
Note that RL algorithms are known to have issues on Windows and MacOS. They will be supported in future.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
max_collect : int
|
||||
|
@ -36,12 +34,6 @@ class PolicyBasedRL(BaseStrategy):
|
|||
After each collect, trainer will sample batch from replay buffer and do the update. Default: 20.
|
||||
policy_fn : function
|
||||
Takes ``ModelEvaluationEnv`` as input and return a policy. See ``_default_policy_fn`` for an example.
|
||||
asynchronous : bool
|
||||
If true, in each step, collector won't wait for all the envs to complete.
|
||||
This should generally not affect the result, but might affect the efficiency. Note that a slightly more trials
|
||||
than expected might be collected if this is enabled.
|
||||
If asynchronous is false, collector will wait for all parallel environments to complete in each step.
|
||||
See ``tianshou.data.AsyncCollector`` for more details.
|
||||
|
||||
References
|
||||
----------
|
||||
|
@ -51,7 +43,7 @@ class PolicyBasedRL(BaseStrategy):
|
|||
"""
|
||||
|
||||
def __init__(self, max_collect: int = 100, trial_per_collect = 20,
|
||||
policy_fn: Optional[Callable[['ModelEvaluationEnv'], 'BasePolicy']] = None, asynchronous: bool = True):
|
||||
policy_fn: Optional[Callable[['ModelEvaluationEnv'], 'BasePolicy']] = None):
|
||||
if not has_tianshou:
|
||||
raise ImportError('`tianshou` is required to run RL-based strategy. '
|
||||
'Please use "pip install tianshou" to install it beforehand.')
|
||||
|
@ -59,7 +51,6 @@ class PolicyBasedRL(BaseStrategy):
|
|||
self.policy_fn = policy_fn or self._default_policy_fn
|
||||
self.max_collect = max_collect
|
||||
self.trial_per_collect = trial_per_collect
|
||||
self.asynchronous = asynchronous
|
||||
|
||||
@staticmethod
|
||||
def _default_policy_fn(env):
|
||||
|
@ -77,12 +68,7 @@ class PolicyBasedRL(BaseStrategy):
|
|||
env_fn = lambda: ModelEvaluationEnv(base_model, applied_mutators, search_space)
|
||||
policy = self.policy_fn(env_fn())
|
||||
|
||||
if self.asynchronous:
|
||||
# wait for half of the env complete in each step
|
||||
env = SubprocVectorEnv([env_fn for _ in range(concurrency)], wait_num=int(concurrency * 0.5))
|
||||
collector = AsyncCollector(policy, env, VectorReplayBuffer(20000, len(env)))
|
||||
else:
|
||||
env = SubprocVectorEnv([env_fn for _ in range(concurrency)])
|
||||
env = BaseVectorEnv([env_fn for _ in range(concurrency)], MultiThreadEnvWorker)
|
||||
collector = Collector(policy, env, VectorReplayBuffer(20000, len(env)))
|
||||
|
||||
for cur_collect in range(1, self.max_collect + 1):
|
||||
|
|
|
@ -3,6 +3,8 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
import nni.retiarii.nn.pytorch
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
|
|
|
@ -141,7 +141,6 @@ def test_evolution():
|
|||
_reset_execution_engine()
|
||||
|
||||
|
||||
@pytest.mark.skipif(sys.platform in ('win32', 'darwin'), reason='Does not run on Windows and MacOS')
|
||||
def test_rl():
|
||||
rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
|
||||
engine = MockExecutionEngine(failure_prob=0.2)
|
||||
|
@ -150,7 +149,7 @@ def test_rl():
|
|||
wait_models(*engine.models)
|
||||
_reset_execution_engine()
|
||||
|
||||
rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10, asynchronous=False)
|
||||
rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
|
||||
engine = MockExecutionEngine(failure_prob=0.2)
|
||||
_reset_execution_engine(engine)
|
||||
rl.run(*_get_model_and_mutators())
|
||||
|
|
Загрузка…
Ссылка в новой задаче