зеркало из https://github.com/microsoft/nni.git
[Doc] update results (#5105)
This commit is contained in:
Родитель
ecd08f8f16
Коммит
b4365e0181
|
@ -111,7 +111,8 @@ linkcheck_ignore = [
|
|||
r'https://1drv\.ms/', # OneDrive (shortcut)
|
||||
r'https://onedrive\.live\.com/', # OneDrive
|
||||
r'https://www\.openml\.org/', # OpenML
|
||||
r'https://ml\.informatik\.uni-freiburg\.de/'
|
||||
r'https://ml\.informatik\.uni-freiburg\.de/',
|
||||
r'https://docs\.nvidia\.com/deeplearning/',
|
||||
]
|
||||
|
||||
# Ignore all links located in release.rst
|
||||
|
|
|
@ -177,7 +177,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Result\nThe speedup is test on the entire validation dataset with batch size 32 on A100.\nWe test under two pytorch version and found the latency varying widely.\n\nSetting 1: pytorch 1.12.1\n\nSetting 2: pytorch 1.10.0\n\n.. list-table:: Prune Bert-base-uncased on MNLI\n :header-rows: 1\n :widths: auto\n\n * - Attention Pruning Method\n - FFN Pruning Method\n - Total Sparsity\n - Accuracy\n - Acc. Drop\n - Speedup (S1)\n - Speedup (S2)\n * -\n -\n - 0%\n - 84.73 / 84.63\n - +0.0 / +0.0\n - 12.56s (x1.00)\n - 4.05s (x1.00)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=5)\n - `taylor-fo-weight-pruner`\n - 51.39%\n - 84.25 / 84.96\n - -0.48 / +0.33\n - 6.85s (x1.83)\n - 2.7s (x1.50)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=10)\n - `taylor-fo-weight-pruner`\n - 66.67%\n - 83.98 / 83.75\n - -0.75 / -0.88\n - 4.73s (x2.66)\n - 2.16s (x1.86)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=20)\n - `taylor-fo-weight-pruner`\n - 77.78%\n - 83.02 / 83.06\n - -1.71 / -1.57\n - 3.35s (x3.75)\n - 1.72s (x2.35)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=30)\n - `taylor-fo-weight-pruner`\n - 87.04%\n - 81.24 / 80.99\n - -3.49 / -3.64\n - 2.19s (x5.74)\n - 1.31s (x3.09)\n\n"
|
||||
"## Result\nThe speedup is test on the entire validation dataset with batch size 128 on A100.\nWe test under two pytorch version and found the latency varying widely.\n\nSetting 1: pytorch 1.12.1\n\nSetting 2: pytorch 1.10.0\n\n.. list-table:: Prune Bert-base-uncased on MNLI\n :header-rows: 1\n :widths: auto\n\n * - Attention Pruning Method\n - FFN Pruning Method\n - Total Sparsity\n - Accuracy\n - Acc. Drop\n - Speedup (S1)\n - Speedup (S2)\n * -\n -\n - 85.1M (-0.0%)\n - 84.85 / 85.28\n - +0.0 / +0.0\n - 25.60s (x1.00)\n - 8.10s (x1.00)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=1)\n - `taylor-fo-weight-pruner`\n - 54.1M (-36.43%)\n - 85.38 / 85.41\n - +0.53 / +0.13\n - 17.93s (x1.43)\n - 7.22s (x1.12)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=5)\n - `taylor-fo-weight-pruner`\n - 37.1M (-56.40%)\n - 84.73 / 85.12\n - -0.12 / -0.16\n - 12.83s (x2.00)\n - 5.61s (x1.44)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=10)\n - `taylor-fo-weight-pruner`\n - 24.1M (-71.68%)\n - 84.14 / 84.78\n - -0.71 / -0.50\n - 8.93s (x2.87)\n - 4.55s (x1.78)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=20)\n - `taylor-fo-weight-pruner`\n - 14.3M (-83.20%)\n - 83.26 / 82.96\n - -1.59 / -2.32\n - 5.98s (x4.28)\n - 3.56s (x2.28)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=30)\n - `taylor-fo-weight-pruner`\n - 9.9M (-88.37%)\n - 82.22 / 82.19\n - -2.63 / -3.09\n - 4.36s (x5.88)\n - 3.12s (x2.60)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=40)\n - `taylor-fo-weight-pruner`\n - 8.8M (-89.66%)\n - 81.64 / 82.39\n - -3.21 / -2.89\n - 3.88s (x6.60)\n - 2.81s (x2.88)\n\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
|
@ -537,7 +537,7 @@ for current_epoch in range(total_epochs):
|
|||
# %%
|
||||
# Result
|
||||
# ------
|
||||
# The speedup is test on the entire validation dataset with batch size 32 on A100.
|
||||
# The speedup is test on the entire validation dataset with batch size 128 on A100.
|
||||
# We test under two pytorch version and found the latency varying widely.
|
||||
#
|
||||
# Setting 1: pytorch 1.12.1
|
||||
|
@ -557,36 +557,50 @@ for current_epoch in range(total_epochs):
|
|||
# - Speedup (S2)
|
||||
# * -
|
||||
# -
|
||||
# - 0%
|
||||
# - 84.73 / 84.63
|
||||
# - 85.1M (-0.0%)
|
||||
# - 84.85 / 85.28
|
||||
# - +0.0 / +0.0
|
||||
# - 12.56s (x1.00)
|
||||
# - 4.05s (x1.00)
|
||||
# - 25.60s (x1.00)
|
||||
# - 8.10s (x1.00)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 54.1M (-36.43%)
|
||||
# - 85.38 / 85.41
|
||||
# - +0.53 / +0.13
|
||||
# - 17.93s (x1.43)
|
||||
# - 7.22s (x1.12)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 51.39%
|
||||
# - 84.25 / 84.96
|
||||
# - -0.48 / +0.33
|
||||
# - 6.85s (x1.83)
|
||||
# - 2.7s (x1.50)
|
||||
# - 37.1M (-56.40%)
|
||||
# - 84.73 / 85.12
|
||||
# - -0.12 / -0.16
|
||||
# - 12.83s (x2.00)
|
||||
# - 5.61s (x1.44)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 66.67%
|
||||
# - 83.98 / 83.75
|
||||
# - -0.75 / -0.88
|
||||
# - 4.73s (x2.66)
|
||||
# - 2.16s (x1.86)
|
||||
# - 24.1M (-71.68%)
|
||||
# - 84.14 / 84.78
|
||||
# - -0.71 / -0.50
|
||||
# - 8.93s (x2.87)
|
||||
# - 4.55s (x1.78)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 77.78%
|
||||
# - 83.02 / 83.06
|
||||
# - -1.71 / -1.57
|
||||
# - 3.35s (x3.75)
|
||||
# - 1.72s (x2.35)
|
||||
# - 14.3M (-83.20%)
|
||||
# - 83.26 / 82.96
|
||||
# - -1.59 / -2.32
|
||||
# - 5.98s (x4.28)
|
||||
# - 3.56s (x2.28)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 87.04%
|
||||
# - 81.24 / 80.99
|
||||
# - -3.49 / -3.64
|
||||
# - 2.19s (x5.74)
|
||||
# - 1.31s (x3.09)
|
||||
# - 9.9M (-88.37%)
|
||||
# - 82.22 / 82.19
|
||||
# - -2.63 / -3.09
|
||||
# - 4.36s (x5.88)
|
||||
# - 3.12s (x2.60)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 8.8M (-89.66%)
|
||||
# - 81.64 / 82.39
|
||||
# - -3.21 / -2.89
|
||||
# - 3.88s (x6.60)
|
||||
# - 2.81s (x2.88)
|
||||
|
|
|
@ -1 +1 @@
|
|||
4935f5727dd073c91bcfab8b9f0676d7
|
||||
d3191675dd9427c6906f2bd3929ee382
|
|
@ -643,11 +643,11 @@ NNI will support per-step-pruning-schedule in the future, then can use an pruner
|
|||
|
||||
|
||||
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 538-593
|
||||
.. GENERATED FROM PYTHON SOURCE LINES 538-607
|
||||
|
||||
Result
|
||||
------
|
||||
The speedup is test on the entire validation dataset with batch size 32 on A100.
|
||||
The speedup is test on the entire validation dataset with batch size 128 on A100.
|
||||
We test under two pytorch version and found the latency varying widely.
|
||||
|
||||
Setting 1: pytorch 1.12.1
|
||||
|
@ -667,44 +667,58 @@ Setting 2: pytorch 1.10.0
|
|||
- Speedup (S2)
|
||||
* -
|
||||
-
|
||||
- 0%
|
||||
- 84.73 / 84.63
|
||||
- 85.1M (-0.0%)
|
||||
- 84.85 / 85.28
|
||||
- +0.0 / +0.0
|
||||
- 12.56s (x1.00)
|
||||
- 4.05s (x1.00)
|
||||
- 25.60s (x1.00)
|
||||
- 8.10s (x1.00)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 54.1M (-36.43%)
|
||||
- 85.38 / 85.41
|
||||
- +0.53 / +0.13
|
||||
- 17.93s (x1.43)
|
||||
- 7.22s (x1.12)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 51.39%
|
||||
- 84.25 / 84.96
|
||||
- -0.48 / +0.33
|
||||
- 6.85s (x1.83)
|
||||
- 2.7s (x1.50)
|
||||
- 37.1M (-56.40%)
|
||||
- 84.73 / 85.12
|
||||
- -0.12 / -0.16
|
||||
- 12.83s (x2.00)
|
||||
- 5.61s (x1.44)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 66.67%
|
||||
- 83.98 / 83.75
|
||||
- -0.75 / -0.88
|
||||
- 4.73s (x2.66)
|
||||
- 2.16s (x1.86)
|
||||
- 24.1M (-71.68%)
|
||||
- 84.14 / 84.78
|
||||
- -0.71 / -0.50
|
||||
- 8.93s (x2.87)
|
||||
- 4.55s (x1.78)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 77.78%
|
||||
- 83.02 / 83.06
|
||||
- -1.71 / -1.57
|
||||
- 3.35s (x3.75)
|
||||
- 1.72s (x2.35)
|
||||
- 14.3M (-83.20%)
|
||||
- 83.26 / 82.96
|
||||
- -1.59 / -2.32
|
||||
- 5.98s (x4.28)
|
||||
- 3.56s (x2.28)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 87.04%
|
||||
- 81.24 / 80.99
|
||||
- -3.49 / -3.64
|
||||
- 2.19s (x5.74)
|
||||
- 1.31s (x3.09)
|
||||
- 9.9M (-88.37%)
|
||||
- 82.22 / 82.19
|
||||
- -2.63 / -3.09
|
||||
- 4.36s (x5.88)
|
||||
- 3.12s (x2.60)
|
||||
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
|
||||
- :ref:`taylor-fo-weight-pruner`
|
||||
- 8.8M (-89.66%)
|
||||
- 81.64 / 82.39
|
||||
- -3.21 / -2.89
|
||||
- 3.88s (x6.60)
|
||||
- 2.81s (x2.88)
|
||||
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 41.637 seconds)
|
||||
**Total running time of the script:** ( 0 minutes 20.822 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_tutorials_pruning_bert_glue.py:
|
||||
|
|
Двоичный файл не отображается.
|
@ -5,10 +5,10 @@
|
|||
|
||||
Computation times
|
||||
=================
|
||||
**01:51.710** total execution time for **tutorials** files:
|
||||
**00:20.822** total execution time for **tutorials** files:
|
||||
|
||||
+-----------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_tutorials_pruning_bert_glue.py` (``pruning_bert_glue.py``) | 00:00.000 | 0.0 MB |
|
||||
| :ref:`sphx_glr_tutorials_pruning_bert_glue.py` (``pruning_bert_glue.py``) | 00:20.822 | 0.0 MB |
|
||||
+-----------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_tutorials_darts.py` (``darts.py``) | 01:51.710 | 0.0 MB |
|
||||
+-----------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
|
|
|
@ -537,7 +537,7 @@ for current_epoch in range(total_epochs):
|
|||
# %%
|
||||
# Result
|
||||
# ------
|
||||
# The speedup is test on the entire validation dataset with batch size 32 on A100.
|
||||
# The speedup is test on the entire validation dataset with batch size 128 on A100.
|
||||
# We test under two pytorch version and found the latency varying widely.
|
||||
#
|
||||
# Setting 1: pytorch 1.12.1
|
||||
|
@ -557,36 +557,50 @@ for current_epoch in range(total_epochs):
|
|||
# - Speedup (S2)
|
||||
# * -
|
||||
# -
|
||||
# - 0%
|
||||
# - 84.73 / 84.63
|
||||
# - 85.1M (-0.0%)
|
||||
# - 84.85 / 85.28
|
||||
# - +0.0 / +0.0
|
||||
# - 12.56s (x1.00)
|
||||
# - 4.05s (x1.00)
|
||||
# - 25.60s (x1.00)
|
||||
# - 8.10s (x1.00)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 54.1M (-36.43%)
|
||||
# - 85.38 / 85.41
|
||||
# - +0.53 / +0.13
|
||||
# - 17.93s (x1.43)
|
||||
# - 7.22s (x1.12)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 51.39%
|
||||
# - 84.25 / 84.96
|
||||
# - -0.48 / +0.33
|
||||
# - 6.85s (x1.83)
|
||||
# - 2.7s (x1.50)
|
||||
# - 37.1M (-56.40%)
|
||||
# - 84.73 / 85.12
|
||||
# - -0.12 / -0.16
|
||||
# - 12.83s (x2.00)
|
||||
# - 5.61s (x1.44)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 66.67%
|
||||
# - 83.98 / 83.75
|
||||
# - -0.75 / -0.88
|
||||
# - 4.73s (x2.66)
|
||||
# - 2.16s (x1.86)
|
||||
# - 24.1M (-71.68%)
|
||||
# - 84.14 / 84.78
|
||||
# - -0.71 / -0.50
|
||||
# - 8.93s (x2.87)
|
||||
# - 4.55s (x1.78)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 77.78%
|
||||
# - 83.02 / 83.06
|
||||
# - -1.71 / -1.57
|
||||
# - 3.35s (x3.75)
|
||||
# - 1.72s (x2.35)
|
||||
# - 14.3M (-83.20%)
|
||||
# - 83.26 / 82.96
|
||||
# - -1.59 / -2.32
|
||||
# - 5.98s (x4.28)
|
||||
# - 3.56s (x2.28)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 87.04%
|
||||
# - 81.24 / 80.99
|
||||
# - -3.49 / -3.64
|
||||
# - 2.19s (x5.74)
|
||||
# - 1.31s (x3.09)
|
||||
# - 9.9M (-88.37%)
|
||||
# - 82.22 / 82.19
|
||||
# - -2.63 / -3.09
|
||||
# - 4.36s (x5.88)
|
||||
# - 3.12s (x2.60)
|
||||
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
|
||||
# - :ref:`taylor-fo-weight-pruner`
|
||||
# - 8.8M (-89.66%)
|
||||
# - 81.64 / 82.39
|
||||
# - -3.21 / -2.89
|
||||
# - 3.88s (x6.60)
|
||||
# - 2.81s (x2.88)
|
||||
|
|
Загрузка…
Ссылка в новой задаче