This commit is contained in:
liuzhe-lz 2022-03-18 17:43:50 +08:00 коммит произвёл GitHub
Родитель 22ee2ac435
Коммит d1c6bbae60
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
30 изменённых файлов: 1621 добавлений и 8 удалений

3
.gitignore поставляемый
Просмотреть файл

@ -13,6 +13,9 @@
/test/ut/retiarii/_debug_graph_data.json
/test/ut/retiarii/out.tmp
# example generated files
/nni_assets/**/data/
# Logs
logs
*.log

Просмотреть файл

@ -5,7 +5,6 @@ Hyperparameter Optimization
.. toctree::
:maxdepth: 2
TensorBoard Integration <tensorboard>
Implement Custom Tuners and Assessors <custom_algorithm>
Install Custom or 3rd-party Tuners and Assessors <custom_algorithm_installation>
Tuner Benchmark <hpo_benchmark>

Просмотреть файл

@ -2,6 +2,8 @@
Hyperparameter Optimization
###########################
Auto hyperparameter optimization (HPO), or auto tuning, is one of the key features of NNI.
.. raw:: html
<script>
@ -15,7 +17,9 @@ Hyperparameter Optimization
:maxdepth: 2
Overview <overview>
Tutorial </tutorials/hpo_quickstart_pytorch/main>
Search Space <search_space>
Tuners <tuners>
Assessors <assessors>
TensorBoard Integration <tensorboard>
Advanced Usage <advanced_toctree.rst>

Просмотреть файл

@ -87,10 +87,10 @@ to manually customize hyperparameters, and to manage multiple HPO experiments.
Tutorials
---------
To start using NNI HPO, choose the tutorial of your favorite framework:
To start using NNI HPO, choose the quickstart tutorial of your favorite framework:
* PyTorch MNIST tutorial
* :doc:`TensorFlow MNIST tutorial </tutorials/hpo_quickstart_tensorflow/main>`
* :doc:`PyTorch tutorial </tutorials/hpo_quickstart_pytorch/main>`
* :doc:`TensorFlow tutorial </tutorials/hpo_quickstart_tensorflow/main>`
Extra Features
--------------

Просмотреть файл

@ -96,7 +96,7 @@ Then, please read :doc:`Quick start <Tutorial/QuickStart>` and :doc:`Tutorials <
.. codesnippetcard::
:icon: ../img/thumbnails/hpo-icon-small.png
:title: Hyper-parameter Tuning
:link: tutorials/hpo_quickstart_tensorflow/main
:link: tutorials/hpo_quickstart_pytorch/main
.. code-block::

Просмотреть файл

@ -1,4 +1,4 @@
.. 737612334d31e3c0ee8db7f53dc2944f
.. c20f29083a3327d6ecad5f73901e7f99
###########################
Neural Network Intelligence

Просмотреть файл

@ -24,6 +24,13 @@ Tutorials
:image: ../img/thumbnails/overview-31.png
:tags: Experiment/HPO
.. cardlinkitem::
:header: HPO Quickstart with PyTorch
:description: Use HPO to tune a PyTorch FashionMNIST model
:link: tutorials/hpo_quickstart_pytorch/main.html
:image: ../img/thumbnails/overview-33.png
:tags: HPO
.. cardlinkitem::
:header: HPO Quickstart with TensorFlow
:description: Use HPO to tune a TensorFlow MNIST model

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 35 KiB

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 35 KiB

Просмотреть файл

@ -0,0 +1,176 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# NNI HPO Quickstart with PyTorch\nThis tutorial optimizes the model in `official PyTorch quickstart`_ with auto-tuning.\n\nThe tutorial consists of 4 steps: \n\n 1. Modify the model for auto-tuning.\n 2. Define hyperparameters' search space.\n 3. Configure the experiment.\n 4. Run the experiment.\n\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Prepare the model\nIn first step, you need to prepare the model to be tuned.\n\nThe model should be put in a separate script.\nIt will be evaluated many times concurrently,\nand possibly will be trained on distributed platforms.\n\nIn this tutorial, the model is defined in :doc:`model.py <model>`.\n\nPlease understand the model code before continue to next step.\n\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2: Define search space\nIn model code, we have prepared 3 hyperparameters to be tuned:\n*features*, *lr*, and *momentum*.\n\nHere we need to define their *search space* so the tuning algorithm can sample them in desired range.\n\nAssuming we have following prior knowledge for these hyperparameters:\n\n 1. *features* should be one of 128, 256, 512, 1024.\n 2. *lr* should be a float between 0.0001 and 0.1, and it follows exponential distribution.\n 3. *momentum* should be a float between 0 and 1.\n\nIn NNI, the space of *features* is called ``choice``;\nthe space of *lr* is called ``loguniform``;\nand the space of *momentum* is called ``uniform``.\nYou may have noticed, these names are derived from ``numpy.random``.\n\nFor full specification of search space, check :doc:`the reference </hpo/search_space>`.\n\nNow we can define the search space as follow:\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"search_space = {\n 'features': {'_type': 'choice', '_value': [128, 256, 512, 1024]},\n 'lr': {'_type': 'loguniform', '_value': [0.0001, 0.1]},\n 'momentum': {'_type': 'uniform', '_value': [0, 1]},\n}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3: Configure the experiment\nNNI uses an *experiment* to manage the HPO process.\nThe *experiment config* defines how to train the models and how to explore the search space.\n\nIn this tutorial we use a *local* mode experiment,\nwhich means models will be trained on local machine, without using any special training platform.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from nni.experiment import Experiment\nexperiment = Experiment('local')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we start to configure the experiment.\n\nFirstly, specify the model code.\nIn NNI evaluation of each hyperparameter set is called a *trial*.\nSo the model script is called *trial code*.\n\nIf you are using Linux system without Conda, you many need to change ``python`` to ``python3``.\n\nWhen ``trial_code_directory`` is a relative path, it relates to current working directory.\nTo run ``main.py`` from a different path, you can set trial code directory to ``Path(__file__).parent``.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"experiment.config.trial_command = 'python model.py'\nexperiment.config.trial_code_directory = '.'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then specify the search space we defined above:\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"experiment.config.search_space = search_space"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Choose a tuning algorithm.\nHere we use :doc:`TPE tuner </hpo/tuners>`.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"experiment.config.tuner.name = 'TPE'\nexperiment.config.tuner.class_args['optimize_mode'] = 'maximize'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Specify how many trials to run.\nHere we evaluate 10 sets of hyperparameters in total, and concurrently evaluate 4 sets at a time.\n\nPlease note that ``max_trial_number`` here is merely for a quick example.\nWith default config TPE tuner requires 20 trials to warm up.\nIn real world max trial number is commonly set to 100+.\n\nYou can also set ``max_experiment_duration = '1h'`` to limit running time.\n\nAnd alternatively, you can skip this part and set no limit at all.\nThe experiment will run forever until you press Ctrl-C.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"experiment.config.max_trial_number = 10\nexperiment.config.trial_concurrency = 4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 4: Run the experiment\nNow the experiment is ready. Choose a port and launch it.\n\nYou can use the web portal to view experiment status: http://localhost:8080.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"experiment.run(8080)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

Просмотреть файл

@ -0,0 +1,114 @@
"""
NNI HPO Quickstart with PyTorch
===============================
This tutorial optimizes the model in `official PyTorch quickstart`_ with auto-tuning.
The tutorial consists of 4 steps:
1. Modify the model for auto-tuning.
2. Define hyperparameters' search space.
3. Configure the experiment.
4. Run the experiment.
.. _official PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
"""
# %%
# Step 1: Prepare the model
# -------------------------
# In first step, you need to prepare the model to be tuned.
#
# The model should be put in a separate script.
# It will be evaluated many times concurrently,
# and possibly will be trained on distributed platforms.
#
# In this tutorial, the model is defined in :doc:`model.py <model>`.
#
# Please understand the model code before continue to next step.
# %%
# Step 2: Define search space
# ---------------------------
# In model code, we have prepared 3 hyperparameters to be tuned:
# *features*, *lr*, and *momentum*.
#
# Here we need to define their *search space* so the tuning algorithm can sample them in desired range.
#
# Assuming we have following prior knowledge for these hyperparameters:
#
# 1. *features* should be one of 128, 256, 512, 1024.
# 2. *lr* should be a float between 0.0001 and 0.1, and it follows exponential distribution.
# 3. *momentum* should be a float between 0 and 1.
#
# In NNI, the space of *features* is called ``choice``;
# the space of *lr* is called ``loguniform``;
# and the space of *momentum* is called ``uniform``.
# You may have noticed, these names are derived from ``numpy.random``.
#
# For full specification of search space, check :doc:`the reference </hpo/search_space>`.
#
# Now we can define the search space as follow:
search_space = {
'features': {'_type': 'choice', '_value': [128, 256, 512, 1024]},
'lr': {'_type': 'loguniform', '_value': [0.0001, 0.1]},
'momentum': {'_type': 'uniform', '_value': [0, 1]},
}
# %%
# Step 3: Configure the experiment
# --------------------------------
# NNI uses an *experiment* to manage the HPO process.
# The *experiment config* defines how to train the models and how to explore the search space.
#
# In this tutorial we use a *local* mode experiment,
# which means models will be trained on local machine, without using any special training platform.
from nni.experiment import Experiment
experiment = Experiment('local')
# %%
# Now we start to configure the experiment.
#
# Firstly, specify the model code.
# In NNI evaluation of each hyperparameter set is called a *trial*.
# So the model script is called *trial code*.
#
# If you are using Linux system without Conda, you many need to change ``python`` to ``python3``.
#
# When ``trial_code_directory`` is a relative path, it relates to current working directory.
# To run ``main.py`` from a different path, you can set trial code directory to ``Path(__file__).parent``.
experiment.config.trial_command = 'python model.py'
experiment.config.trial_code_directory = '.'
# %%
# Then specify the search space we defined above:
experiment.config.search_space = search_space
# %%
# Choose a tuning algorithm.
# Here we use :doc:`TPE tuner </hpo/tuners>`.
experiment.config.tuner.name = 'TPE'
experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
# %%
# Specify how many trials to run.
# Here we evaluate 10 sets of hyperparameters in total, and concurrently evaluate 4 sets at a time.
#
# Please note that ``max_trial_number`` here is merely for a quick example.
# With default config TPE tuner requires 20 trials to warm up.
# In real world max trial number is commonly set to 100+.
#
# You can also set ``max_experiment_duration = '1h'`` to limit running time.
#
# And alternatively, you can skip this part and set no limit at all.
# The experiment will run forever until you press Ctrl-C.
experiment.config.max_trial_number = 10
experiment.config.trial_concurrency = 4
# %%
# Step 4: Run the experiment
# --------------------------
# Now the experiment is ready. Choose a port and launch it.
#
# You can use the web portal to view experiment status: http://localhost:8080.
experiment.run(8080)

Просмотреть файл

@ -0,0 +1 @@
264c7f7dffbb756f8a6aa675d4e792e4

Просмотреть файл

@ -0,0 +1,271 @@
:orphan:
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/hpo_quickstart_pytorch/main.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_tutorials_hpo_quickstart_pytorch_main.py>`
to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_tutorials_hpo_quickstart_pytorch_main.py:
NNI HPO Quickstart with PyTorch
===============================
This tutorial optimizes the model in `official PyTorch quickstart`_ with auto-tuning.
The tutorial consists of 4 steps:
1. Modify the model for auto-tuning.
2. Define hyperparameters' search space.
3. Configure the experiment.
4. Run the experiment.
.. _official PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
.. GENERATED FROM PYTHON SOURCE LINES 17-28
Step 1: Prepare the model
-------------------------
In first step, you need to prepare the model to be tuned.
The model should be put in a separate script.
It will be evaluated many times concurrently,
and possibly will be trained on distributed platforms.
In this tutorial, the model is defined in :doc:`model.py <model>`.
Please understand the model code before continue to next step.
.. GENERATED FROM PYTHON SOURCE LINES 30-51
Step 2: Define search space
---------------------------
In model code, we have prepared 3 hyperparameters to be tuned:
*features*, *lr*, and *momentum*.
Here we need to define their *search space* so the tuning algorithm can sample them in desired range.
Assuming we have following prior knowledge for these hyperparameters:
1. *features* should be one of 128, 256, 512, 1024.
2. *lr* should be a float between 0.0001 and 0.1, and it follows exponential distribution.
3. *momentum* should be a float between 0 and 1.
In NNI, the space of *features* is called ``choice``;
the space of *lr* is called ``loguniform``;
and the space of *momentum* is called ``uniform``.
You may have noticed, these names are derived from ``numpy.random``.
For full specification of search space, check :doc:`the reference </hpo/search_space>`.
Now we can define the search space as follow:
.. GENERATED FROM PYTHON SOURCE LINES 51-58
.. code-block:: default
search_space = {
'features': {'_type': 'choice', '_value': [128, 256, 512, 1024]},
'lr': {'_type': 'loguniform', '_value': [0.0001, 0.1]},
'momentum': {'_type': 'uniform', '_value': [0, 1]},
}
.. GENERATED FROM PYTHON SOURCE LINES 59-66
Step 3: Configure the experiment
--------------------------------
NNI uses an *experiment* to manage the HPO process.
The *experiment config* defines how to train the models and how to explore the search space.
In this tutorial we use a *local* mode experiment,
which means models will be trained on local machine, without using any special training platform.
.. GENERATED FROM PYTHON SOURCE LINES 66-69
.. code-block:: default
from nni.experiment import Experiment
experiment = Experiment('local')
.. GENERATED FROM PYTHON SOURCE LINES 70-80
Now we start to configure the experiment.
Firstly, specify the model code.
In NNI evaluation of each hyperparameter set is called a *trial*.
So the model script is called *trial code*.
If you are using Linux system without Conda, you many need to change ``python`` to ``python3``.
When ``trial_code_directory`` is a relative path, it relates to current working directory.
To run ``main.py`` from a different path, you can set trial code directory to ``Path(__file__).parent``.
.. GENERATED FROM PYTHON SOURCE LINES 80-83
.. code-block:: default
experiment.config.trial_command = 'python model.py'
experiment.config.trial_code_directory = '.'
.. GENERATED FROM PYTHON SOURCE LINES 84-85
Then specify the search space we defined above:
.. GENERATED FROM PYTHON SOURCE LINES 85-87
.. code-block:: default
experiment.config.search_space = search_space
.. GENERATED FROM PYTHON SOURCE LINES 88-90
Choose a tuning algorithm.
Here we use :doc:`TPE tuner </hpo/tuners>`.
.. GENERATED FROM PYTHON SOURCE LINES 90-93
.. code-block:: default
experiment.config.tuner.name = 'TPE'
experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
.. GENERATED FROM PYTHON SOURCE LINES 94-105
Specify how many trials to run.
Here we evaluate 10 sets of hyperparameters in total, and concurrently evaluate 4 sets at a time.
Please note that ``max_trial_number`` here is merely for a quick example.
With default config TPE tuner requires 20 trials to warm up.
In real world max trial number is commonly set to 100+.
You can also set ``max_experiment_duration = '1h'`` to limit running time.
And alternatively, you can skip this part and set no limit at all.
The experiment will run forever until you press Ctrl-C.
.. GENERATED FROM PYTHON SOURCE LINES 105-108
.. code-block:: default
experiment.config.max_trial_number = 10
experiment.config.trial_concurrency = 4
.. GENERATED FROM PYTHON SOURCE LINES 109-114
Step 4: Run the experiment
--------------------------
Now the experiment is ready. Choose a port and launch it.
You can use the web portal to view experiment status: http://localhost:8080.
.. GENERATED FROM PYTHON SOURCE LINES 114-115
.. code-block:: default
experiment.run(8080)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
[2022-03-18 12:58:19] Creating experiment, Experiment ID: 2ijcdvau
[2022-03-18 12:58:19] Starting web server...
[2022-03-18 12:58:21] Setting up...
[2022-03-18 12:58:21] Web UI URLs: http://127.0.0.1:8080 http://172.22.104.196:8080
[2022-03-18 13:57:44] Stopping experiment, please wait...
[2022-03-18 13:57:47] Experiment stopped
True
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 59 minutes 28.055 seconds)
.. _sphx_glr_download_tutorials_hpo_quickstart_pytorch_main.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: main.py <main.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: main.ipynb <main.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_

Двоичные данные
docs/source/tutorials/hpo_quickstart_pytorch/main_codeobj.pickle Normal file

Двоичный файл не отображается.

Просмотреть файл

@ -0,0 +1,162 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Port PyTorch Quickstart to NNI\nThis is a modified version of `PyTorch quickstart`_.\n\nIt can be run directly and will have the exact same result as original version.\n\nFurthermore, it enables the ability of auto-tuning with an NNI *experiment*, which will be discussed later.\n\nFor now, we recommend to run this script directly to verify the environment.\n\nThere are only 2 key differences from the original version:\n\n1. In `Get optimized hyperparameters`_ part, it receives auto-generated hyperparameters.\n2. In `Train the model and report accuracy`_ part, it reports accuracy metrics for tuner to generate next hyperparameter set.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import nni\nimport torch\nfrom torch import nn\nfrom torch.utils.data import DataLoader\nfrom torchvision import datasets\nfrom torchvision.transforms import ToTensor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hyperparameters to be tuned\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"params = {\n 'features': 512,\n 'lr': 0.001,\n 'momentum': 0,\n}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get optimized hyperparameters\nIf run directly, ``nni.get_next_parameters()`` is a no-op and returns an empty dict.\nBut with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"optimized_params = nni.get_next_parameter()\nparams.update(optimized_params)\nprint(params)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load dataset\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"training_data = datasets.FashionMNIST(root=\"data\", train=True, download=True, transform=ToTensor())\ntest_data = datasets.FashionMNIST(root=\"data\", train=False, download=True, transform=ToTensor())\n\nbatch_size = 64\n\ntrain_dataloader = DataLoader(training_data, batch_size=batch_size)\ntest_dataloader = DataLoader(test_data, batch_size=batch_size)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build model with hyperparameters\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\nprint(f\"Using {device} device\")\n\nclass NeuralNetwork(nn.Module):\n def __init__(self):\n super(NeuralNetwork, self).__init__()\n self.flatten = nn.Flatten()\n self.linear_relu_stack = nn.Sequential(\n nn.Linear(28*28, params['features']),\n nn.ReLU(),\n nn.Linear(params['features'], params['features']),\n nn.ReLU(),\n nn.Linear(params['features'], 10)\n )\n\n def forward(self, x):\n x = self.flatten(x)\n logits = self.linear_relu_stack(x)\n return logits\n\nmodel = NeuralNetwork().to(device)\n\nloss_fn = nn.CrossEntropyLoss()\noptimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define train() and test()\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def train(dataloader, model, loss_fn, optimizer):\n size = len(dataloader.dataset)\n model.train()\n for batch, (X, y) in enumerate(dataloader):\n X, y = X.to(device), y.to(device)\n pred = model(X)\n loss = loss_fn(pred, y)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n\ndef test(dataloader, model, loss_fn):\n size = len(dataloader.dataset)\n num_batches = len(dataloader)\n model.eval()\n test_loss, correct = 0, 0\n with torch.no_grad():\n for X, y in dataloader:\n X, y = X.to(device), y.to(device)\n pred = model(X)\n test_loss += loss_fn(pred, y).item()\n correct += (pred.argmax(1) == y).type(torch.float).sum().item()\n test_loss /= num_batches\n correct /= size\n return correct"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train the model and report accuracy\nReport accuracy to NNI so the tuning algorithm can predict best hyperparameters.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"epochs = 5\nfor t in range(epochs):\n print(f\"Epoch {t+1}\\n-------------------------------\")\n train(train_dataloader, model, loss_fn, optimizer)\n accuracy = test(test_dataloader, model, loss_fn)\n nni.report_intermediate_result(accuracy)\nnni.report_final_result(accuracy)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

Просмотреть файл

@ -0,0 +1,124 @@
"""
Port PyTorch Quickstart to NNI
==============================
This is a modified version of `PyTorch quickstart`_.
It can be run directly and will have the exact same result as original version.
Furthermore, it enables the ability of auto-tuning with an NNI *experiment*, which will be discussed later.
For now, we recommend to run this script directly to verify the environment.
There are only 2 key differences from the original version:
1. In `Get optimized hyperparameters`_ part, it receives auto-generated hyperparameters.
2. In `Train the model and report accuracy`_ part, it reports accuracy metrics for tuner to generate next hyperparameter set.
.. _PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
"""
# %%
import nni
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# %%
# Hyperparameters to be tuned
# ---------------------------
params = {
'features': 512,
'lr': 0.001,
'momentum': 0,
}
# %%
# Get optimized hyperparameters
# -----------------------------
# If run directly, ``nni.get_next_parameters()`` is a no-op and returns an empty dict.
# But with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm.
optimized_params = nni.get_next_parameter()
params.update(optimized_params)
print(params)
# %%
# Load dataset
# ------------
training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# %%
# Build model with hyperparameters
# --------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, params['features']),
nn.ReLU(),
nn.Linear(params['features'], params['features']),
nn.ReLU(),
nn.Linear(params['features'], 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])
# %%
# Define train() and test()
# -------------------------
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
return correct
# %%
# Train the model and report accuracy
# -----------------------------------
# Report accuracy to NNI so the tuning algorithm can predict best hyperparameters.
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
accuracy = test(test_dataloader, model, loss_fn)
nni.report_intermediate_result(accuracy)
nni.report_final_result(accuracy)

Просмотреть файл

@ -0,0 +1 @@
8250278967847abcd7b16ec4e811e825

Просмотреть файл

@ -0,0 +1,304 @@
:orphan:
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/hpo_quickstart_pytorch/model.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_tutorials_hpo_quickstart_pytorch_model.py>`
to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_tutorials_hpo_quickstart_pytorch_model.py:
Port PyTorch Quickstart to NNI
==============================
This is a modified version of `PyTorch quickstart`_.
It can be run directly and will have the exact same result as original version.
Furthermore, it enables the ability of auto-tuning with an NNI *experiment*, which will be discussed later.
For now, we recommend to run this script directly to verify the environment.
There are only 2 key differences from the original version:
1. In `Get optimized hyperparameters`_ part, it receives auto-generated hyperparameters.
2. In `Train the model and report accuracy`_ part, it reports accuracy metrics for tuner to generate next hyperparameter set.
.. _PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
.. GENERATED FROM PYTHON SOURCE LINES 21-28
.. code-block:: default
import nni
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
.. GENERATED FROM PYTHON SOURCE LINES 29-31
Hyperparameters to be tuned
---------------------------
.. GENERATED FROM PYTHON SOURCE LINES 31-37
.. code-block:: default
params = {
'features': 512,
'lr': 0.001,
'momentum': 0,
}
.. GENERATED FROM PYTHON SOURCE LINES 38-42
Get optimized hyperparameters
-----------------------------
If run directly, ``nni.get_next_parameters()`` is a no-op and returns an empty dict.
But with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm.
.. GENERATED FROM PYTHON SOURCE LINES 42-46
.. code-block:: default
optimized_params = nni.get_next_parameter()
params.update(optimized_params)
print(params)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/lz/nnisrc/nni/runtime/platform/standalone.py:32: RuntimeWarning: Running NNI code without runtime. Check the following tutorial if you are new to NNI: https://nni.readthedocs.io/en/stable/Tutorial/QuickStart.html#id1
warnings.warn(warning_message, RuntimeWarning)
{'features': 512, 'lr': 0.001, 'momentum': 0}
.. GENERATED FROM PYTHON SOURCE LINES 47-49
Load dataset
------------
.. GENERATED FROM PYTHON SOURCE LINES 49-57
.. code-block:: default
training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
.. GENERATED FROM PYTHON SOURCE LINES 58-60
Build model with hyperparameters
--------------------------------
.. GENERATED FROM PYTHON SOURCE LINES 60-85
.. code-block:: default
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, params['features']),
nn.ReLU(),
nn.Linear(params['features'], params['features']),
nn.ReLU(),
nn.Linear(params['features'], 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Using cpu device
.. GENERATED FROM PYTHON SOURCE LINES 86-88
Define train() and test()
-------------------------
.. GENERATED FROM PYTHON SOURCE LINES 88-114
.. code-block:: default
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
return correct
.. GENERATED FROM PYTHON SOURCE LINES 115-118
Train the model and report accuracy
-----------------------------------
Report accuracy to NNI so the tuning algorithm can predict best hyperparameters.
.. GENERATED FROM PYTHON SOURCE LINES 118-125
.. code-block:: default
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
accuracy = test(test_dataloader, model, loss_fn)
nni.report_intermediate_result(accuracy)
nni.report_final_result(accuracy)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Epoch 1
-------------------------------
[2022-03-18 14:02:46] INFO (nni/MainThread) Intermediate result: 0.5418 (Index 0)
Epoch 2
-------------------------------
[2022-03-18 14:02:52] INFO (nni/MainThread) Intermediate result: 0.5945 (Index 1)
Epoch 3
-------------------------------
[2022-03-18 14:02:58] INFO (nni/MainThread) Intermediate result: 0.6202 (Index 2)
Epoch 4
-------------------------------
[2022-03-18 14:03:04] INFO (nni/MainThread) Intermediate result: 0.6376 (Index 3)
Epoch 5
-------------------------------
[2022-03-18 14:03:09] INFO (nni/MainThread) Intermediate result: 0.652 (Index 4)
[2022-03-18 14:03:09] INFO (nni/MainThread) Final result: 0.652
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 29.026 seconds)
.. _sphx_glr_download_tutorials_hpo_quickstart_pytorch_model.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: model.py <model.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: model.ipynb <model.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_

Двоичные данные
docs/source/tutorials/hpo_quickstart_pytorch/model_codeobj.pickle Normal file

Двоичный файл не отображается.

Просмотреть файл

@ -0,0 +1,14 @@
:orphan:
.. _sphx_glr_tutorials_hpo_quickstart_pytorch_sg_execution_times:
Computation times
=================
**00:29.026** total execution time for **tutorials_hpo_quickstart_pytorch** files:
+--------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_tutorials_hpo_quickstart_pytorch_model.py` (``model.py``) | 00:29.026 | 0.0 MB |
+--------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_tutorials_hpo_quickstart_pytorch_main.py` (``main.py``) | 00:00.000 | 0.0 MB |
+--------------------------------------------------------------------------+-----------+--------+

52
docs/source/tutorials/index.rst сгенерированный
Просмотреть файл

@ -203,6 +203,58 @@ Tutorials
.. _sphx_glr_tutorials_hpo_quickstart_pytorch:
.. raw:: html
<div class="sphx-glr-thumbcontainer" tooltip="The tutorial consists of 4 steps: ">
.. only:: html
.. figure:: /tutorials/hpo_quickstart_pytorch/images/thumb/sphx_glr_main_thumb.png
:alt: NNI HPO Quickstart with PyTorch
:ref:`sphx_glr_tutorials_hpo_quickstart_pytorch_main.py`
.. raw:: html
</div>
.. toctree::
:hidden:
/tutorials/hpo_quickstart_pytorch/main
.. raw:: html
<div class="sphx-glr-thumbcontainer" tooltip="It can be run directly and will have the exact same result as original version.">
.. only:: html
.. figure:: /tutorials/hpo_quickstart_pytorch/images/thumb/sphx_glr_model_thumb.png
:alt: Port PyTorch Quickstart to NNI
:ref:`sphx_glr_tutorials_hpo_quickstart_pytorch_model.py`
.. raw:: html
</div>
.. toctree::
:hidden:
/tutorials/hpo_quickstart_pytorch/model
.. raw:: html
<div class="sphx-glr-clear"></div>
.. _sphx_glr_tutorials_hpo_quickstart_tensorflow:

Просмотреть файл

Просмотреть файл

@ -0,0 +1,114 @@
"""
NNI HPO Quickstart with PyTorch
===============================
This tutorial optimizes the model in `official PyTorch quickstart`_ with auto-tuning.
The tutorial consists of 4 steps:
1. Modify the model for auto-tuning.
2. Define hyperparameters' search space.
3. Configure the experiment.
4. Run the experiment.
.. _official PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
"""
# %%
# Step 1: Prepare the model
# -------------------------
# In first step, you need to prepare the model to be tuned.
#
# The model should be put in a separate script.
# It will be evaluated many times concurrently,
# and possibly will be trained on distributed platforms.
#
# In this tutorial, the model is defined in :doc:`model.py <model>`.
#
# Please understand the model code before continue to next step.
# %%
# Step 2: Define search space
# ---------------------------
# In model code, we have prepared 3 hyperparameters to be tuned:
# *features*, *lr*, and *momentum*.
#
# Here we need to define their *search space* so the tuning algorithm can sample them in desired range.
#
# Assuming we have following prior knowledge for these hyperparameters:
#
# 1. *features* should be one of 128, 256, 512, 1024.
# 2. *lr* should be a float between 0.0001 and 0.1, and it follows exponential distribution.
# 3. *momentum* should be a float between 0 and 1.
#
# In NNI, the space of *features* is called ``choice``;
# the space of *lr* is called ``loguniform``;
# and the space of *momentum* is called ``uniform``.
# You may have noticed, these names are derived from ``numpy.random``.
#
# For full specification of search space, check :doc:`the reference </hpo/search_space>`.
#
# Now we can define the search space as follow:
search_space = {
'features': {'_type': 'choice', '_value': [128, 256, 512, 1024]},
'lr': {'_type': 'loguniform', '_value': [0.0001, 0.1]},
'momentum': {'_type': 'uniform', '_value': [0, 1]},
}
# %%
# Step 3: Configure the experiment
# --------------------------------
# NNI uses an *experiment* to manage the HPO process.
# The *experiment config* defines how to train the models and how to explore the search space.
#
# In this tutorial we use a *local* mode experiment,
# which means models will be trained on local machine, without using any special training platform.
from nni.experiment import Experiment
experiment = Experiment('local')
# %%
# Now we start to configure the experiment.
#
# Firstly, specify the model code.
# In NNI evaluation of each hyperparameter set is called a *trial*.
# So the model script is called *trial code*.
#
# If you are using Linux system without Conda, you many need to change ``python`` to ``python3``.
#
# When ``trial_code_directory`` is a relative path, it relates to current working directory.
# To run ``main.py`` from a different path, you can set trial code directory to ``Path(__file__).parent``.
experiment.config.trial_command = 'python model.py'
experiment.config.trial_code_directory = '.'
# %%
# Then specify the search space we defined above:
experiment.config.search_space = search_space
# %%
# Choose a tuning algorithm.
# Here we use :doc:`TPE tuner </hpo/tuners>`.
experiment.config.tuner.name = 'TPE'
experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
# %%
# Specify how many trials to run.
# Here we evaluate 10 sets of hyperparameters in total, and concurrently evaluate 4 sets at a time.
#
# Please note that ``max_trial_number`` here is merely for a quick example.
# With default config TPE tuner requires 20 trials to warm up.
# In real world max trial number is commonly set to 100+.
#
# You can also set ``max_experiment_duration = '1h'`` to limit running time.
#
# And alternatively, you can skip this part and set no limit at all.
# The experiment will run forever until you press Ctrl-C.
experiment.config.max_trial_number = 10
experiment.config.trial_concurrency = 4
# %%
# Step 4: Run the experiment
# --------------------------
# Now the experiment is ready. Choose a port and launch it.
#
# You can use the web portal to view experiment status: http://localhost:8080.
experiment.run(8080)

Просмотреть файл

@ -0,0 +1,124 @@
"""
Port PyTorch Quickstart to NNI
==============================
This is a modified version of `PyTorch quickstart`_.
It can be run directly and will have the exact same result as original version.
Furthermore, it enables the ability of auto-tuning with an NNI *experiment*, which will be discussed later.
For now, we recommend to run this script directly to verify the environment.
There are only 2 key differences from the original version:
1. In `Get optimized hyperparameters`_ part, it receives auto-generated hyperparameters.
2. In `Train the model and report accuracy`_ part, it reports accuracy metrics for tuner to generate next hyperparameter set.
.. _PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
"""
# %%
import nni
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# %%
# Hyperparameters to be tuned
# ---------------------------
params = {
'features': 512,
'lr': 0.001,
'momentum': 0,
}
# %%
# Get optimized hyperparameters
# -----------------------------
# If run directly, ``nni.get_next_parameters()`` is a no-op and returns an empty dict.
# But with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm.
optimized_params = nni.get_next_parameter()
params.update(optimized_params)
print(params)
# %%
# Load dataset
# ------------
training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# %%
# Build model with hyperparameters
# --------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, params['features']),
nn.ReLU(),
nn.Linear(params['features'], params['features']),
nn.ReLU(),
nn.Linear(params['features'], 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])
# %%
# Define train() and test()
# -------------------------
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
return correct
# %%
# Train the model and report accuracy
# -----------------------------------
# Report accuracy to NNI so the tuning algorithm can predict best hyperparameters.
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
accuracy = test(test_dataloader, model, loss_fn)
nni.report_intermediate_result(accuracy)
nni.report_final_result(accuracy)

26
nni/tools/nnictl/hello.py Normal file
Просмотреть файл

@ -0,0 +1,26 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
Provide ``nnictl hello`` command to generate quickstart example.
"""
from pathlib import Path
import shutil
from colorama import Fore
import nni_assets
def create_example(_args):
example_path = Path(nni_assets.__path__[0], 'hello_hpo')
try:
shutil.copytree(example_path, 'nni_hello_hpo')
except PermissionError:
print(Fore.RED + 'Permission denied. Please run the command in a writable directory.' + Fore.RESET)
exit(1)
except FileExistsError:
print('File exists. Please run "python nni_hello_hpo/main.py" to start the example.')
exit(1)
print('A hyperparameter optimization example has been created at "nni_hello_hpo" directory.')
print('Please run "python nni_hello_hpo/main.py" to try it out.')

Просмотреть файл

@ -16,7 +16,8 @@ from .nnictl_utils import stop_experiment, trial_ls, trial_kill, list_experiment
save_experiment, load_experiment
from .algo_management import algo_reg, algo_unreg, algo_show, algo_list
from .constants import DEFAULT_REST_PORT
from .import ts_management
from . import hello
from . import ts_management
init(autoreset=True)
@ -483,6 +484,10 @@ def get_parser():
jupyter_uninstall_parser = jupyter_subparsers.add_parser('uninstall', description='Uninstall JupyterLab extension.')
jupyter_uninstall_parser.set_defaults(func=_jupyter_uninstall)
# hello command
parser_hello = subparsers.add_parser('hello', description='Create "hello nni" example in current directory.')
parser_hello.set_defaults(func=hello.create_example)
return parser

0
nni_assets/__init__.py Normal file
Просмотреть файл

Просмотреть файл

@ -0,0 +1,33 @@
"""
NNI hyperparameter optimization example.
Check the online tutorial for details:
https://nni.readthedocs.io/en/stable/tutorials/hpo_quickstart_pytorch/main.html
"""
from pathlib import Path
import signal
from nni.experiment import Experiment
# Define search space
search_space = {
'features': {'_type': 'choice', '_value': [128, 256, 512, 1024]},
'lr': {'_type': 'loguniform', '_value': [0.0001, 0.1]},
'momentum': {'_type': 'uniform', '_value': [0, 1]},
}
# Configure experiment
experiment = Experiment('local')
experiment.config.trial_command = 'python model.py'
experiment.config.trial_code_directory = Path(__file__).parent
experiment.config.search_space = search_space
experiment.config.tuner.name = 'Random'
experiment.config.max_trial_number = 10
experiment.config.trial_concurrency = 2
# Run it!
experiment.run(port=8080, wait_completion=False)
print('Experiment is running. Press Ctrl-C to quit.')
signal.pause()

Просмотреть файл

@ -0,0 +1,67 @@
"""
Run main.py to start.
This script is modified from PyTorch quickstart:
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
"""
import nni
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Get optimized hyperparameters
params = {'features': 512, 'lr': 0.001, 'momentum': 0}
optimized_params = nni.get_next_parameter()
params.update(optimized_params)
# Load dataset
training_data = datasets.FashionMNIST(root='data', train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root='data', train=False, download=True, transform=ToTensor())
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# Build model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = nn.Sequential(
nn.Flatten(),
nn.Linear(28*28, params['features']),
nn.ReLU(),
nn.Linear(params['features'], params['features']),
nn.ReLU(),
nn.Linear(params['features'], 10)
).to(device)
# Training functions
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])
def train(dataloader, model, loss_fn, optimizer):
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(dataloader, model, loss_fn):
model.eval()
correct = 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
return correct / len(dataloader.dataset)
# Train the model
epochs = 5
for t in range(epochs):
train(train_dataloader, model, loss_fn, optimizer)
accuracy = test(test_dataloader, model, loss_fn)
nni.report_intermediate_result(accuracy)
nni.report_final_result(accuracy)

Просмотреть файл

@ -112,6 +112,7 @@ def _setup():
packages = _find_python_packages(),
package_data = {
'nni': _find_requirements_txt() + _find_default_config(), # setuptools issue #1806
'nni_assets': _find_asset_files(),
'nni_node': _find_node_files() # note: this does not work before building
},
@ -165,6 +166,14 @@ def _find_requirements_txt():
def _find_default_config():
return ['runtime/default_config/' + name for name in os.listdir('nni/runtime/default_config')]
def _find_asset_files():
files = []
for dirpath, dirnames, filenames in os.walk('nni_assets'):
for filename in filenames:
if os.path.splitext(filename)[1] == '.py':
files.append(os.path.join(dirpath[len('nni_assets/'):], filename))
return sorted(files)
def _find_node_files():
if not os.path.exists('nni_node'):
if release and 'build_ts' not in sys.argv and 'clean' not in sys.argv:
@ -279,7 +288,10 @@ _temp_files = [
'test/model_path/',
'test/temp.json',
'test/ut/sdk/*.pth',
'test/ut/tools/annotation/_generated/'
'test/ut/tools/annotation/_generated/',
# example
'nni_assets/**/data/',
]