2023-05-04 23:30:10 +03:00
|
|
|
// Copyright (c) Microsoft Corporation.
|
|
|
|
// Licensed under the MIT License.
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <cmath>
|
|
|
|
#include <complex>
|
2023-06-02 00:12:05 +03:00
|
|
|
#include <algorithm>
|
2023-05-04 23:30:10 +03:00
|
|
|
#include "narrow.h"
|
|
|
|
|
2023-06-02 00:12:05 +03:00
|
|
|
#ifndef M_PI
|
|
|
|
#define M_PI 3.14159265358979323846
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// http://www.dspguide.com/CH33.PDF, p625
|
2023-05-04 23:30:10 +03:00
|
|
|
class ButterworthLowpass {
|
2023-06-02 00:12:05 +03:00
|
|
|
private:
|
|
|
|
static constexpr int kFilterOrder = 4;
|
|
|
|
|
|
|
|
// public for test
|
2023-05-04 23:30:10 +03:00
|
|
|
public:
|
2023-06-02 00:12:05 +03:00
|
|
|
static void OnePoleCoefs(double pole_n, double np, double fc, double a[3], double b[3]) {
|
|
|
|
double rp, ip, t, w, m, d, x0, x1, x2, y1, y2, k;
|
|
|
|
|
|
|
|
// Calculate pole location on unit circle
|
|
|
|
rp = -cos(M_PI / (np * 2.0) + (pole_n - 1.0) * M_PI / np);
|
|
|
|
ip = sin(M_PI / (np * 2.0) + (pole_n - 1.0) * M_PI / np);
|
|
|
|
|
|
|
|
// s-domain to z-domain conversion
|
|
|
|
t = 2.0 * tan(0.5);
|
|
|
|
w = 2.0 * M_PI * fc;
|
|
|
|
m = rp * rp + ip * ip;
|
|
|
|
d = 4.0 - 4.0 * rp * t + m * t * t;
|
|
|
|
x0 = t * t / d;
|
|
|
|
x1 = 2.0 * t * t / d;
|
|
|
|
x2 = t * t / d;
|
|
|
|
y1 = (8.0 - 2.0 * m * t * t) / d;
|
|
|
|
y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
|
|
|
|
|
|
|
|
// LP TO LP, or LP TO HP
|
|
|
|
k = sin(0.5 - w / 2.0) / sin(0.5 + w / 2.0);
|
|
|
|
|
|
|
|
d = 1.0 + y1 * k - y2 * k * k;
|
|
|
|
|
|
|
|
a[0] = (x0 - x1 * k + x2 * k * k) / d;
|
|
|
|
a[1] = (-2.0 * x0 * k + x1 + x1 * k * k - 2.0 * x2 * k) / d;
|
|
|
|
a[2] = (x0 * k * k - x1 * k + x2) / d;
|
|
|
|
b[1] = (2.0 * k + y1 + y1 * k * k - 2.0 * y2 * k) / d;
|
|
|
|
b[2] = (-k * k - y1 * k + y2) / d;
|
2023-05-04 23:30:10 +03:00
|
|
|
}
|
|
|
|
|
2023-06-02 00:12:05 +03:00
|
|
|
void CalculateCoefs(std::vector<double>& num, std::vector<double>& den, size_t num_pole, double cutoff_freq) {
|
|
|
|
const size_t POLE_DATA_SIZE = 3;
|
|
|
|
num.resize(kFilterOrder + 1);
|
|
|
|
den.resize(kFilterOrder + 1);
|
|
|
|
|
|
|
|
const size_t pole_buff_size = num_pole + POLE_DATA_SIZE;
|
2023-05-04 23:30:10 +03:00
|
|
|
|
2023-06-02 00:12:05 +03:00
|
|
|
std::vector<double> a(pole_buff_size), b(pole_buff_size), ta(pole_buff_size), tb(pole_buff_size);
|
|
|
|
std::array<double, POLE_DATA_SIZE> ap{}, bp{};
|
|
|
|
double sa{}, sb{}, gain{};
|
|
|
|
|
|
|
|
a[POLE_DATA_SIZE - 1] = 1.0;
|
|
|
|
b[POLE_DATA_SIZE - 1] = 1.0;
|
|
|
|
|
|
|
|
for (auto p = 1; p <= num_pole / 2; ++p) {
|
|
|
|
OnePoleCoefs(p, static_cast<double>(num_pole), cutoff_freq, ap.data(), bp.data());
|
|
|
|
|
|
|
|
std::copy(a.begin(), a.end(), ta.begin());
|
|
|
|
std::copy(b.begin(), b.end(), tb.begin());
|
|
|
|
|
|
|
|
for (auto i = POLE_DATA_SIZE - 1; i <= num_pole + 2; ++i) {
|
|
|
|
a[i] = ap[0] * ta[i] + ap[1] * ta[i - 1] + ap[2] * ta[i - 2];
|
|
|
|
b[i] = tb[i] - bp[1] * tb[i - 1] - bp[2] * tb[i - 2];
|
|
|
|
}
|
2023-05-04 23:30:10 +03:00
|
|
|
}
|
2023-06-02 00:12:05 +03:00
|
|
|
|
|
|
|
b[POLE_DATA_SIZE - 1] = 0.0;
|
|
|
|
|
2023-06-08 02:26:45 +03:00
|
|
|
for (size_t i = 0; i <= num_pole; ++i) {
|
2023-06-02 00:12:05 +03:00
|
|
|
a[i] = a[i + 2];
|
|
|
|
b[i] = -b[i + 2];
|
|
|
|
}
|
|
|
|
|
2023-06-08 02:26:45 +03:00
|
|
|
for (size_t i = 0; i <= num_pole; ++i) {
|
2023-06-02 00:12:05 +03:00
|
|
|
sa += a[i];
|
|
|
|
sb += b[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
gain = sa / (1.0 - sb);
|
|
|
|
|
|
|
|
for (auto i = 0; i <= num_pole; ++i)
|
|
|
|
a[i] /= gain;
|
|
|
|
|
|
|
|
for (auto i = 0; i <= num_pole; ++i) {
|
|
|
|
num[i] = a[i];
|
|
|
|
den[i] = -b[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
den[0] = 1.0;
|
2023-05-04 23:30:10 +03:00
|
|
|
}
|
|
|
|
|
2023-06-02 00:12:05 +03:00
|
|
|
|
|
|
|
std::vector<double> coefs_a_;
|
|
|
|
std::vector<double> coefs_b_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
ButterworthLowpass(double cutoff_freq, double sampling_rate) {
|
|
|
|
auto normalized_cutoff = cutoff_freq / sampling_rate;
|
|
|
|
CalculateCoefs(coefs_b_, coefs_a_, kFilterOrder, normalized_cutoff);
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::vector<double>& GetCoefs_A() {
|
|
|
|
return coefs_a_;
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::vector<double>& GetCoefs_B() {
|
|
|
|
return coefs_b_;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> Process(const std::vector<float>& input) {
|
|
|
|
std::vector<float> output(input.size(), 0.0);
|
|
|
|
|
|
|
|
// Initialize delay elements
|
|
|
|
double x_n_1 = 0.0, x_n_2 = 0.0, x_n_3 = 0.0, x_n_4 = 0.0;
|
|
|
|
double y_n_1 = 0.0, y_n_2 = 0.0, y_n_3 = 0.0, y_n_4 = 0.0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < input.size(); ++i) {
|
|
|
|
double x = input[i];
|
|
|
|
|
|
|
|
// Compute the output
|
|
|
|
double y = coefs_b_[0] * x + coefs_b_[1] * x_n_1 + coefs_b_[2] * x_n_2 + coefs_b_[3] * x_n_3 + coefs_b_[4] * x_n_4
|
|
|
|
- coefs_a_[1] * y_n_1 - coefs_a_[2] * y_n_2 - coefs_a_[3] * y_n_3 - coefs_a_[4] * y_n_4;
|
|
|
|
|
|
|
|
// Shuffle old input and output values
|
|
|
|
x_n_4 = x_n_3;
|
|
|
|
x_n_3 = x_n_2;
|
|
|
|
x_n_2 = x_n_1;
|
|
|
|
x_n_1 = x;
|
|
|
|
|
|
|
|
y_n_4 = y_n_3;
|
|
|
|
y_n_3 = y_n_2;
|
|
|
|
y_n_2 = y_n_1;
|
|
|
|
y_n_1 = y;
|
|
|
|
|
|
|
|
output[i] = static_cast<float>(y);
|
|
|
|
}
|
|
|
|
|
|
|
|
return output;
|
|
|
|
}
|
2023-05-04 23:30:10 +03:00
|
|
|
};
|
|
|
|
|
|
|
|
// https://ccrma.stanford.edu/~jos/sasp/Kaiser_Window.html
|
|
|
|
class KaiserWindowInterpolation {
|
|
|
|
private:
|
|
|
|
// Kaiser window parameters, empirically
|
2023-06-02 00:12:05 +03:00
|
|
|
static constexpr double kBeta = 6.0; // Beta controls the width of the transition band
|
2023-05-04 23:30:10 +03:00
|
|
|
|
|
|
|
public:
|
|
|
|
static void Process(const std::vector<float>& input, std::vector<float>& output, float inputSampleRate, float outputSampleRate) {
|
|
|
|
// Downsampling factor
|
|
|
|
float factor = outputSampleRate / inputSampleRate;
|
|
|
|
|
|
|
|
// Calculate the number of output samples
|
|
|
|
int outputSize = static_cast<int>(std::ceil(static_cast<float>(input.size()) * factor));
|
|
|
|
output.resize(outputSize);
|
|
|
|
|
2023-06-08 02:26:45 +03:00
|
|
|
for (size_t i = 0; i < outputSize; i++) {
|
2023-05-04 23:30:10 +03:00
|
|
|
float index = i / factor; // Fractional index for interpolation
|
|
|
|
|
|
|
|
// Calculate the integer and fractional parts of the index
|
|
|
|
int integerPart = static_cast<int>(index);
|
|
|
|
float fractionalPart = index - integerPart;
|
|
|
|
|
|
|
|
// Calculate the range of input samples for interpolation
|
2023-06-02 00:12:05 +03:00
|
|
|
int range = static_cast<int>(std::ceil(kBeta / (2.0 * factor)));
|
2023-06-08 02:26:45 +03:00
|
|
|
size_t startSample = std::max(0, integerPart - range);
|
|
|
|
size_t endSample = std::min(static_cast<int>(input.size()) - 1, integerPart + range);
|
2023-05-04 23:30:10 +03:00
|
|
|
|
|
|
|
// Calculate the Kaiser window weights for the input samples
|
|
|
|
std::vector<double> weights = KaiserWin(static_cast<size_t>(endSample - startSample + 1));
|
2023-06-08 02:26:45 +03:00
|
|
|
for (size_t j = startSample; j <= endSample; j++) {
|
|
|
|
double distance = std::abs(static_cast<double>(j) - index);
|
2023-06-02 00:12:05 +03:00
|
|
|
double sincValue = (distance < 1e-6f) ? 1.0f : std::sin(M_PI * distance) / (M_PI * distance);
|
2023-05-04 23:30:10 +03:00
|
|
|
weights[j - startSample] *= sincValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform the interpolation
|
|
|
|
double interpolatedValue = 0.0f;
|
2023-06-08 02:26:45 +03:00
|
|
|
for (size_t j = startSample; j <= endSample; j++) {
|
2023-05-04 23:30:10 +03:00
|
|
|
interpolatedValue += input[j] * weights[j - startSample];
|
|
|
|
}
|
|
|
|
|
|
|
|
output[i] = static_cast<float>(interpolatedValue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// std::cyl_bessel_i is not available for every platform.
|
|
|
|
static double cyl_bessel_i0(double x) {
|
|
|
|
double sum = 0.0;
|
|
|
|
double term = 1.0;
|
|
|
|
double x_squared = x * x / 4.0;
|
2023-06-02 00:12:05 +03:00
|
|
|
size_t n = 0;
|
2023-05-04 23:30:10 +03:00
|
|
|
double tolerance = 1e-8;
|
|
|
|
|
|
|
|
while (term > tolerance * sum) {
|
|
|
|
sum += term;
|
|
|
|
n += 1;
|
|
|
|
term *= x_squared / (n * n);
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Kaiser Window function
|
|
|
|
static std::vector<double> KaiserWin(size_t window_length) {
|
|
|
|
std::vector<double> window(window_length);
|
|
|
|
static const double i0_beta = cyl_bessel_i0(kBeta);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < window_length; i++) {
|
|
|
|
double x = 2.0 * i / (window_length - 1.0) - 1.0;
|
|
|
|
double bessel_value = cyl_bessel_i0(kBeta * std::sqrt(1 - x * x));
|
|
|
|
window[i] = bessel_value / i0_beta;
|
|
|
|
}
|
|
|
|
|
|
|
|
return window;
|
|
|
|
}
|
|
|
|
};
|